Khatua, Chandra and Bhattacharya, Dipten and Kundu, Biswanath and Balla, Vamsi Krishna and Bodhak, Subhadip and Goswami, Sudipta (2018) Multiferroic Reinforced Bioactive Glass Composites for Bone Tissue Engineering Applications. Advanced Engineering Materials, 20 (12). Art No-1800329. ISSN 1438-1656

[img] PDF - Published Version
Restricted to Registered users only

Download (2568Kb) | Request a copy

Abstract

Nowadays controlling cellular responses and function of biological molecules is becoming one of the prime areas of focus in biomedical field. In this investigation, an attempt is made to generate in situ charge in bioactive glass (BAG) by incorporating BiFeO3 (BF, a multiferroic material). It is hypothesized that BF in BAG can accelerate cellular activities for rapid tissue healing with externally applied magnetic field due to in situ polarization. BAG composites with different amounts of BF (2 to 15 wt%) are prepared using ball milling followed by pressing and sintering. The composites are characterized in terms of microstructures, constituent phases, magnetic, and electrical properties. Further, in vitro cytotoxicity studies are performed to evaluate the influence of in situ polarization by culturing mouse preosteoblast cells (MC3T3) on BAG-BF composites under different external magnetic field treatments. These in vitro cell-materials interaction studies demonstrate that magnetic field strengths of 200 or 350 mT exposed for 30 min/day can enhance cell viability and proliferation on these composites up to three times. Hence, the authors expect that this investigation will enable further developments to extend the application of multiferroics in bone tissue engineering.

Item Type: Article
Subjects: Engineering Materials
Divisions: Bioceramics & Coating
Depositing User: Bidhan Chaudhuri
Date Deposited: 16 Jan 2019 08:23
Last Modified: 16 Jan 2019 08:23
URI: http://cgcri.csircentral.net/id/eprint/4447

Actions (login required)

View Item View Item