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Abstract 

 Precursor glass of composition 25K2O-25Nb2O5-50SiO2 (mol %) doped with 

Er2O3 (0.5 wt % in excess) was isothermally crystallized at 800oC for 0-100 h to obtain 

transparent KNbO3 nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, 

dielectric constant, refractive index, absorption and fluorescence measurements were 

carried out to analyze the morphology, dielectric, structure and optical properties of the 

glass-ceramics. The crystallite size of KNbO3 estimated from XRD and TEM is found to 

vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with 

heat-treatment time reveals the formation of ferroelectric nano-crystalline KNbO3 phase. 

The measured visible photoluminescence spectra have exhibited green emission 

transitions of 2H11/2, 
4S3/2 → 4I15/2 upon excitation at 377 nm (4I15/2 → 4G11/2) absorption 

band of Er3+ ions. The near infrared (NIR) emission transition 4I13/2 → 4I15/2 is detected 

around 1550 nm on excitation at 980 nm (4I15/2 → 4I11/2) of absorption bands of Er3+ ions. 

It is observed that photoluminescent intensity at 526 nm (2H11/2 → 4I15/2), 550 nm (4S3/2 → 

4I15/2) and 1550 nm (4I13/2 → 4I15/2) initially decrease and then gradually increase with 

increase in heat-treatment time. The measured lifetime (τf) of the 4I13/2 → 4I15/2 transition 
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also possesses a similar trend. The measured absorption and fluorescence spectra reveal 

that the Er3+ ions gradually enter into the KNbO3 nanocrystals.  
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1.  Introduction 

 Ferroelectric potassium niobate (KNbO3, KN) has the A1+B5+O3 perovskite-type 

(orthorhombic) crystal structure (crystal symmetry class mm2; unit cell dimensions: a = 

5.6896 Å, b = 3.9693 Å and c = 5.7256 Å) and having large nonlinear coefficient (d33 = 

27.4 pm/V at 1064 nm). It is widely used in frequency doubling, tunable wave guiding, 

active laser host, holographic storage and surface acoustic wave [1-3]. Consequently, it 

becomes a subject of intense study. Very recently, potassium niobate ceramics were 

revisited in the interest of a search for environmental friendly lead-free piezoelectric and 

nonlinear materials [4]. Due to the low cost and high speed fabrication process of glass 

technology in comparison to single crystal preparation, with the flexibility of tailored 

properties to produce transparent nanostructures by controlled crystallization, 

ferroelectric KNbO3 containing transparent glass-ceramics have generated increasing 

academic and technological interests. A large electro-optic effect (r42 = 380 pm/V for 

KNbO3 [3]) has been observed in a number of transparent glass-ceramic materials 

containing a ferroelectric crystalline phase. Several isothermal or non-isothermal studies 

have been carried out with a view to generate KNbO3, KNbSi2O7, K3Nb3Si2O13 etc. 

ferroelectric crystal phases in various compositions of the K2O-Nb2O5-SiO2 (KNS) glass 

system [5-10] and noticed strong second harmonic generation (SHG). It is observed that 

these glass-ceramics doped with rare earth (RE) ions, become very good luminescent 

media which are able to generate and amplify light. This application in combination with 

inherent nonlinear optical (NLO) properties of ferroelectric crystals, could offer a 

possibility to design self frequency doubling laser sources [3]. Hence, it is considered 

more interesting and important to explore crystallization of RE (here, Er3+) doped 
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ferroelectric crystal (here, KNbO3) producing glasses. To the best of our knowledge, 

there is no previous report on nanostructured crystallization of erbium (III), Er3+ ion 

doped K2O-Nb2O5-SiO2 glasses.  

 In comparison to the other rare earth ions, Er3+ has been extensively used as the 

most suitable active ion in several hosts by normal fluorescence for optical amplification 

at 1.5 µm. Trivalent erbium ions characterized by the 4I13/2 → 4I15/2 intra-4f transition play 

the key role in near infrared (NIR) emission [11]. Besides, Er3+ doped glasses are chosen 

for getting better lasing property that can act as an eye-safe laser sources near 1550 nm. 

The photoluminescent emission intensity of erbium doped glasses is mainly dependent on 

the chemical environment of Er3+ ion because in the excited state Er3+ ion can de-excite 

by either photon emission at 1.53 µm, or non-radiative relaxation through coupling to a 

quenching site. Also, if the symmetry of the local crystal field around the erbium ion in 

the host glass is not distorted, the emission of erbium ion is forbidden. Therefore, the 

erbium ions must be incorporated in a non-centrosymmetric host material for strong 

optical emission [12, 13]. Similarly, under favorable conditions strong green emission at 

551 nm is possible upon normal high energy excitation.  

 The dielectric property of amorphous solids is different from that of crystalline 

solids. Due to the high spontaneous polarization (Ps = 0.41 C/m2 for KNbO3) as well as 

induced polarization of ferroelectric crystals under applied electric field, the difference in 

the dielectric properties (ε =137 for KNbO3 [14]) is remarkably large than that of the 

glass [3]. Therefore, it is important to study the dielectric properties (dielectric constant) 

with progress of crystallization of precursor glasses of ferroelectric crystals. 
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 In view of the significant and potential advantages as stated above, here we focus 

our systematic analysis on structural, optical and dielectric properties of isothermally 

nanostructured crystallization of KNbO3 in Er3+-doped 25K2O-25Nb2O5-50SiO2 (mol %) 

glasses. The crystallization process has been studied by differential thermal analysis 

(DTA), X-ray diffraction (XRD), refractive index, dielectric constant, field emission 

scanning electron (FESEM) and transmission electron microscopy (TEM) and Fourier 

transform infrared reflection spectroscopy (FTIRRS) analyses as well. 

 

2.  Experimental 

 The glass of the chemical composition of 25K2O-25Nb2O5-50SiO2 (mol %) doped 

with 0.5 wt % Er2O3 (in excess) was prepared using high purity K2CO3 (GR, 99%, Alfa 

Aesar), Nb2O5 (GR, 99.5%, Alfa Aesar), SiO2 (99.99%) and Er2O3 (99.99%, Alfa Aesar) 

by melting the well mixed chemical batch of 100 g glass in a platinum crucible at 1550oC 

for 2 h. The melt was homogenized with two intermittent stirrings and later it was 

quenched by pouring onto a pre-heated iron mould. In order to remove the internal 

stresses the glass block was subsequently annealed at 600oC for 1 h. The as-prepared 

glass block was cut into desired dimensions and polished for undertaking different 

measurements. 

 The density of the as-prepared glass was measured by following the standard 

Archimedes’ principle using distilled water as the buoyancy liquid. The DTA curve of 

powdered glass was recorded on a Netzsch STA 409 C/CD instrument from room 

temperature to 900oC at a heating rate of 10oC/min. The polished samples were heat-

treated at 800oC for 1, 2, 3, 5, 10, 25, 50 and 100 h after nucleating at 720oC temperature 
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for 2 h. The refractive indices of glass and heat-treated samples at five different 

wavelengths (473, 532, 632.8, 1064 and 1552 nm) were measured by a prism coupling 

measurement technique (Model Metricon 2010/M). 

 The XRD pattern was recorded using an Xpert-Pro diffractometer (CuKα) with 

nickel filtered and anchor scan parameters wavelength of 1.54060 Å at 25oC having the 

source power of 40 kV and 30 mA to identify the possible phases. The nanocrystallinity 

of the heat-treated glasses was examined by both FESEM and TEM. A Carl Zeiss high 

resolution field emission electron microscope (FESEM) (model SUPRA 35 VP) with the 

parameters gun vacuum = 3×10-10 mbar, system vacuum = 2.65×10-5 mbar and extractor 

current = 159.3 µA for FESEM measurement. Freshly fractured surfaces of the heat-

treated glasses were etched in 1% HF solution for 150 s and were coated with a thin 

carbon film for the above measurements. And the TEM was done on FEI (Tecnai G2) 

instrument. The dielectric constant of all samples was measured at room temperature 

using a Hioki LCR meter (Model: 3532-50 LCR Hitester) at 1 MHz frequency. 

The fluorescence emission and excitation spectra of the Er3+ doped as-prepared 

and heat-treated samples were measured on an enhanced performance NIR continuous 

bench top modular spectrofluorometer from Photon Technology International (Model: 

QuantaMaster) attached with Hamamatsu NIR-PMT (P1.7R) as detector and Xe arc lamp 

as excitation source. The lifetime was measured with the same instrument using a 75W 

Xe flash lamp. 
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3.  Results and discussion 

3.1 Physical, optical and thermal properties 

 The prepared glass was transparent with body color of pink. From the measured 

glass density, refractive indices (ne, nF′ and nC′) at three different wavelengths and other 

related optical properties have been determined using relevant expressions, and the 

results are presented in Table 1. From Table 1 it is clear that the refractive index and 

density of potassium niobium silicate glass are higher than those of normal soda lime 

silicate glasses. The large refractive indices of these glasses are due to the presence of 

highly polarizable Nb5+ ions with high ionic refraction, 24.5 [15]. It is observed that ions 

with an empty or unfilled d-orbital such as Nb5+ ion (outer electronic configuration: 

4d05s0) contributes very strongly to the linear and nonlinear polarizabilities [16]. For the 

same reason, this glass is also possessing a high value of molar refractivity (RM = 14.95 

cm3) and electronic polarizability (α = 5.592 x 10-24 cm3) [17, 18]. 

       The DTA curve was recorded for the precursor glass powder and is shown in Fig. 1. 

It exhibits an inflection in the temperature range 647-689oC followed by an exothermic 

peak at 759oC (Tp) corresponding to the phase crystallization. The point of intersection of 

the tangents drawn at the slope change as marked in Fig. 1 of the DTA curve estimates 

the glass transition temperature (Tg). These are listed in Table 1. From the DTA data, the 

glass thermal stability factor (∆ = Tp - Tg) has been determined and found to be 78oC. 

Reasonably, high glass stability factor specifies the ability of this glass in forming nano-

structured glass-ceramic under controlled heat-treatment. The exothermal peak at 759°C 

in the DTA thermogram can be attributed to the growth of KNbO3 crystallites from nuclei 

in the glass bulk. The heat-treated glass-ceramics were also transparent as the precursor 
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glass. The transparencies of the precursor glass and resultant nano glass-ceramics are 

shown in Fig. 2 as they are laid down on writing. The refractive indices of glass and heat-

treated samples at five different wavelengths (473, 532, 632.8, 1064 and 1552 nm) are 

shown in Fig. 3. It is seen that the refractive indices of heat-treated samples of 2 and 50 h 

increases rapidly as compared to precursor glass. These are due to the formation of 

KNbO3 crystals having high refractive index (2.2912 at 600 nm [19]).  

 

3.2 XRD analysis  

 Fig. 4(a) shows the X-ray diffractograms of as-prepared glass along with the 

glass-ceramic samples. The amorphous nature of the as-prepared glass is indicated by the 

XRD pattern consisting of only a broad and halo band at around 29o diffraction angle. 

The structuring of this halo band takes place in the XRD pattern of the heat-treated glass-

ceramic samples of 1-100 h along with the appearance of other well defined peaks around 

25o, 28.5o, 30o, 32.8o and 51.5o diffraction angles, which confirms the precipitation 

crystalline phase in the amorphous matrix. The crystalline phase resembles the JCPDS 

cards 32-821 and 32-822 of known potassium niobate. Using the following Scherrer’s 

formula, the average crystallite sizes (diameter, d) were calculated from the full width at 

half maximum (FWHM) values of the diffraction peaks detectable in the traces of 1-100 

h in Fig. 4(a) [20].  

                                  d = 0.9λ/β cosθ                                                   (1) 

where λ is the wavelength of X-ray radiation (CuKα = 1.5406Å), β is the FWHM of the 

peak at 2θ. The diffraction peak located around 2θ = 30o has been considered for this 

estimation. The calculated average crystallite sizes lie in the range 7-15 nm. The gradual 
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increase of crystallite size as a function of heat-treatment duration is presented in Fig. 

4(b).  

 

3.3 FESEM and TEM images analyses 

The morphology and crystallite size in glass-ceramic samples have been 

examined by FESEM and TEM images analyses. The FESEM photomicrographs of the 

sample heat-treated at 800oC for 3 and 50 h duration are presented in Figs. 5(a) and 5(b) 

respectively. From the FESEM micrographs, it is clearly observed that the glassy matrix 

of the heat-treated samples initially phase separated on nanometric scale followed by 

incipient precipitation of defined crystallites within the Nb-K rich phase regions on 

prolonged heat-treatments. The droplets have irregular shape spreading out uniformly 

through out the bulk glass matrix and the size of which can be estimated to be 47-66 nm. 

The TEM and high resolution TEM (HRTEM) images of the sample heat treated for 50 h 

have also been presented in Figs. 5(c) and 5(d) respectively. The inset in Fig. 5(c) 

represents its selected area electron diffraction (SAED) pattern. From the SAED, the 

measured Miller indices are 220 resembling the potassium niobate crystal in the JCPDS 

card file no. 9-156. The atomic or lattice fringes of formed crystallites have been clearly 

observed in HRTEM image and the distance between any two planes is found to be 9.4 

Å. The formed lattice planes from the HRTEM image resemble well with the d-spacing 

of the planes as reported in the JCPDS card file no. 49-824 of known potassium niobate. 

Another interesting result is arising out of the comparison of the FESEM and TEM 

micrographs with the XRD data. The crystallites size are 7-15 and 14-23 nm as estimated 

from the XRD patterns and TEM image respectively. The particle size calculated from 
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TEM is to some extent higher than those from XRD. This is due to the fact that XRD 

analysis gives the average sizes of the entire (very small to big) crystallites whereas TEM 

photograph exhibits the crystallites of some specific places.  For this reason, the latter is 

smaller than the former. However, these sizes are smaller than the single droplet size of 

47-66 nm as observed in FESEM, which suggests that the crystallization starts at the 

interface between the droplets and the matrix. The growth of the crystallites takes place 

inside these droplets, so the droplets are polycrystalline. This phenomenon causes a 

change of the matrix composition, which prevents the further growth of the crystallites, 

regardless of the increase in the heat-treatment time, and a stable transparent biphasic 

structure by a change of the density of inhomogeneities in the matrix is formed [9, 21-

22].  

 

3.4 Fourier transform infrared reflectance spectroscopy 

 Fig. 6 shows the comparative FTIR reflectance  spectra (FTIRRS) of the 

precursor glass and samples heat-treated at 800ºC for 2 and 100 h duration in the 

wavenumber range 500-2000 cm-1. Its inset shows the reflectivity at 930 and 749 cm-1 of 

precursor glass and heat-treated glasses as a function of heat-treatment time. It is seen 

that the FTIRR spectrum of the precursor glass exhibits a broad reflection band centered 

at 930 cm-1 as a result of wider distribution of SiO4 structural units. This is an indication 

of the structural disorder exists in the amorphous network with the presence of SiO4 

tetrahedra and NbO6 octahedra with different number of non-bridging oxygens, and 

attributed to overlapping of Si-O and Nb-O stretching vibrations. In spite of the 

transparent nature of the heat-treated samples, the FTIR reflectance spectra of 2 and 100 
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h reveal narrowing of the main reflection band with additional features arising at 1128, 

749 and 598 cm-1 in comparison to the as-prepared glass [6].  

 Considering the stronger force constant of the Si-O bonds than that of Nb-O ones, 

the reflection bands can be assigned in the FTIR reflectance spectra [23]. In the FTIRR 

spectra, the stretching modes of the Si-O-Si bonds of the SiO4 tetrahedra with 

nonbridging oxygen (NBO) atoms are active in 900-1000 cm-1 range and the stretching 

modes of the Nb-O bonds in the NbO6 octahedra occur in the 700-800 cm-1 range [24].   

  It is seen that there are structural modifications occurring in the glass matrix as a 

result of the heat-treatment as revealed by the variation of the FTIRR spectra of the as-

prepared glass from that of the heat-treated glasses. The rearrangement of the glassy 

matrix is an indicative of the fact that the alkali enriched phase begins to crystallize 

producing a nanostructure with the heat-treatment. The reflection bands around 1050 - 

1150 cm-1 are associated with the ν3 antisymmetric stretching vibration modes of the 

SiO4 tetrahedra. The symmetric stretching mode ν1 is assigned to the reflection bands 

lying in the range 800-1000 cm-1 wavenumber. The reflection band at 1128 cm-1 and 930 

cm-1 wavenumber can be related to the asymmetric and symmetric stretching vibration 

modes of Si-O bonds in SiO4 tetrahedra respectively, while the band at 749 cm-1 is due to 

the Nb-O stretching modes of distorted NbO6 octahedra [25, 26]. Hence, it is revealed 

that in a phase separated matrix of the heat-treated samples, the crystallization starts at 

the interface between the two phases originating a redistribution of both types of 

structural units such as NbO6 octahedra and SiO4 tetrahedra. This corroborates that the 

reflection band centered at 749 cm-1 wavenumber is assigned to the KNbO3 crystal 

formation. Very slow increase in the intensity of this reflection band with the increase in 
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heat-treatment time indicates that the further growth of KNbO3 nanocrystallites at the 

interface is prevented for longer heat-treatment times to satisfy the chemical composition 

required by the crystallizing phase [23] but the reflectivity of the 100 h heat-treated 

sample is more intense than sample heat-treated for 2 h. This is also confirmed by the 

relative intensity ratio (INb-O/ISi-O) of the reflection bands at 749 cm-1 to 930 cm-1 as given 

Table 2. Further, FTIRR spectra of all the samples as shown in Fig. 6 exhibit a band 

around 598 cm-1. It is assigned as ν2 bending vibrational modes of the Si-O bonds in the 

SiO4 tetrahedra. Thus from the investigations carried out on the measured FTIR 

reflectance spectra of Er3+ doped potassium niobium silicate glass and glass-ceramics as 

described above provide the information of crystallization with initial phase separation 

followed by advancement of KNbO3 crystal formation in the glass matrix. The results of 

the FTIRRS are in good agreement with that of XRD, FESEM and TEM studies.  

 

3.5 Dielectric constant 

 As prepared Er3+ doped potassium niobium silicate glass has exhibited relatively 

higher value of dielectric constant (ε =17) than the normal glasses sodalime silicate (ε =7-

10) [8-10] or borosilicate glasses (ε =4.5-8) [6-8] due to high ionic refraction of Nb5+ ion 

(Ri = 24.5) as described earlier. Fig. 7 shows the magnitude of dielectric constant increase 

steeply (from ε =17 to ε =31)) in the case of the heat-treated samples and thereafter it 

maintains almost saturation for any further heat treatment time. This suggests that on 

heat-treatment, at the initial stages, separation of silica rich phase and K–Nb enriched 

phases takes place and with the further prolonged heat-treatments incipient precipitation 

of KNbO3 having high dielectric constant (ε =137) [14] and spontaneous polarization, Ps 
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= 0.41 C/m2 [3]. The variation in crystallite size distributions and also the distribution of 

the KNbO3 phase in the microstructure are the causes for the differences in the dielectric 

constant values amongst the heat-treated samples [5]. This result is again in conformity 

with the conclusions made from XRD, FESEM and TEM measurements on the nano-

crystallization of KNbO3 phase in the glass matrix. 

 

3.6 Optical absorption spectra 

 Fig. 8 shows the representative UV-Vis-NIR absorption spectra of Er3+ doped as-

prepared glass and heat-treated samples for 2, 50 and 100 h duration. The absorption 

occurs due to the 4f-4f electric dipole transitions from the ground 4I15/2 state to different 

excited state of Er3+ ions. The absorption spectra have very strong absorption edges 

below 350 nm and exhibit ten numbers of distinct absorption peaks which are similar to 

those appeared in silicate, tellurite and chloro sulphide glasses [27-32]. All the peaks 

were assigned in accordance with Carnall’s convention as  4I15/2 → 2G9/2 (365 nm), 4G11/2 

(377 nm), 2H9/2 (406 nm), 4F5/2 +  
4F3/2 (450 nm), 4F7/2 (488 nm), 2H11/2 (521 nm), 4S3/2 (544 

nm),  4F9/2 (651 nm), 4I9/2 (799 nm) and 4I11/2 (978 nm) [33]. From this figure it is noticed 

that the base lines of the absorption spectra of heat-treated samples have been elevated 

significantly with diminishing intensities of the absorption peaks. Also the FWHM values 

of the peaks for the transitions 4I15/2 → 4G11/2 and 4I15/2 → 2H11/2 are 4.28 and 6.69 nm for 

precursor glass whereas 3.56 and 6.42 nm respectively for heat-treated samples. All these 

phenomena confirm that the laser active Er3+ ions have entered into the KNbO3 

crystalline phase. Similar facts have also been observed in our earlier work on Eu3+ 

doped KNbO3 glass-ceramics [34].  
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 The uplifting of the base line for glass-ceramic sample due to scattering imparted 

by the nanocrystallite phase is discussed as follows. Normally the decrease of optical 

transmission of the glass-ceramics happens mainly because of two reasons, one is the 

crystallite size and the other is the refractive index difference between crystalline and 

residual amorphous phase. In this system, the crystallite size is found to be in nanometric 

(7-15 nm) scale which smaller than the visible wavelength. But the refractive index of the 

formed KNbO3 phase is found to be considerably higher (RI = 2.2912 at 600 nm [19]) 

than the residual glassy phase (RI = 1.7681 at 632.8 nm, see Fig. 3); hence the later case 

may be responsible for changes observed in the measured optical absorption spectra. This 

is in accordance to the Rayleigh scattering model since the crystallites (7-15 nm) are 

smaller than λ/20 for visible wavelengths. The scattering loss τ, is given by [35] 

                            τ = 32π4
d

3(n∆n)2
NV/3λ4                                            (2)   

where d is the particle diameter, λ the wavelength of light, n the refractive index, N the 

number density of particles, and V the volume of the particle. From the absorption spectra 

(Fig. 8) it is seen that scattering loss in the lower wavelength side is more than in the 

higher wavelength side. Therefore, lower the wavelength of light higher the scattering 

loss and vice versa. From XRD the particle diameter and from FESEM the number 

density and volume of the particles is found to be increased with heat-treatment time. 

Hence the scattering loss is supported by the Eq. (2), where the refractive index of the 

formed crystal phase is more than the residual glass phase.   
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3.7 Emission, excitation and lifetime 

 Figs. 9(a) and 9(b) depict the visible and infrared emission spectra respectively of 

as-prepared precursor glass and samples heat-treated for 2, 50 and 100 h durations. The 

excitation spectra of these four samples measured in the wavelength range 600–1000 nm 

by monitoring with the intense NIR emission located at 1540 nm as shown in Fig. 10. In 

Fig. 9(a), the spectrum of the as-prepared glass sample emits bright green light under 377 

nm (4I15/2 → 4G11/2) excitation. The 515-542 and 542-577 nm green bands correspond to 

the 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 transitions respectively. The former band was 

resolved with Stark splitting at 527 and 535 nm, and the latter revealed the same with 

peaks at 550 and 559 nm respectively. The heat-treated samples exhibited the same 

emission profile as the precursor glass. But the emission band 2H11/2 → 4I15/2 freezes out 

at the initial stages of heat-treatment and the intensity increases with increase in heat-

treatment time. This may be due to the very rapid thermal phonon relaxation from the 

2H11/2 level to the 4S3/2 level [36]. The directly excited 980 nm emission spectra of the as 

prepared glass and the heat-treated samples exhibits emission from 4I13/2 excited level to 

the 4I15/2 ground level with Stark splitting at 1537 and 1566 nm. With increase in heat-

treatment time the peak at 1537 nm for glass shifted to 1540 nm for 100 h heat-treated 

sample. In the case of precursor glass the full width at half maximum (FWHM) of the 

peak at 1550 nm is ~78 nm which is less than that of antimony-borosilicate glasses 

(FWHM = 90 nm) [37] but equivalent to tellurite glasses (FWHM = 77 nm) [38]. The 

FWHM further decreases down to ~56 nm for the heat-treated samples. Similarly, the 

peak intensity ratio at 1566 nm to 1540 nm for precursor glass is ~0.93 which decreases 

down to ~0.79 for the heat-treated samples. It is generally seen that the glass-ceramics 
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samples show more intense photoluminescence than the as-prepared glass. In our case it 

is found that the fluorescence intensity first decreases for the glass-ceramics heat-treated 

for shortest duration (2h) and then increases but with low intense than as-prepared glass. 

The reason behind this may be the fact that in the short durations of heat-treatment the 

samples are phase separated and stable KNbO3 phase grows with longer heat-treatment 

duration. This is also supported by the dielectric data as described earlier. The shifting in 

the peak positions in emission spectra of glass-ceramics and the decrease of the FWHM 

value could establish the fact that the rare earth ions enter but in a less amount into the 

crystalline phase thus formed. In fact, we have generated nanocrystal of KNbO3 in Er3+-

doped K2O-Nb2O5-SiO2 glasses. Consequently, it results in initial formation of KNbO3 

nanocrystals followed by incorporation of Er3+ into the KNbO3 crystals, and further 

growth and formation of more KNbO3 crystals. These facts could clearly be understood if 

we analyze the UV-vis and NIR emission spectral profiles and evolution as shown in Fig. 

9. Kang, et. al [39] have also observed a similar less intense fluorescence in glass-

ceramics than the as prepared glass of neodymium activated lithium alumino silicate 

system. These results are in similar trend when we used Eu3+ as the doping ion in this 

K2O-Nb2O5-SiO2 glass [34]. In that system we reported photoluminescence emission in 

the visible region (500-725 nm). But in this present system we are reporting 

photoluminescence emission in the visible (450-650 nm) and NIR region (1450-1650 nm) 

of Er3+. The Eu3+ and Er3+ ions have different energy levels and different types of 

applications. For example, Eu3+ ion exhibit red emission around 600 nm whereas the Er3+ 

ion exhibit green emission around 550 nm and 1550 nm NIR emission. Moreover, in the 

NIR region, exciting at 1550 nm second harmonic generation at 775 nm could be 
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possible. For these reasons in the present study we are investigating the case of Er3+ as 

the doping ion. As mentioned earlier, the photoluminescent intensity of Er3+ ion is 

strongly dependent on the surrounding chemical environment. For strong luminescent 

intensity, the said ion must be incorporated in a non-centrosymmetric host. Generally, in 

the perovskite type RNbO3 (R = Li, Na, K) crystals, R+ and Nb5+ occupy octahedral sites 

with C3 or nearly C3v point symmetry. When the rare earth ion is entering in the crystal, it 

prefers to replace R+ site forming [REO6]
9- octahedron [40-42]. Here also, the Er3+ ions 

replace K+ ion sites in the formed KNbO3 crystallites due to the closeness of their ionic 

radii (Er3+ = 0.89 Å and K+ = 1.38 Å). However, still there exists slight difference in the 

ionic radius between the dopant (Er3+) and the host ions (K+) along with the excess 

electronic charge on the dopant. Generally, when the impurity ion carries extra charge 

than the replaced host ion, the electrostatic force acting on the impurity is greater than 

that on the host ion, the impurity ion will pull the oxygen ligands inwards along RE–

ligand bonds, creating distortion in the lattice structure and as a result, distorted [ErO6]
9- 

octrahedron is formed with Er3+ ion facing an off-center displacement from C3 axis in the 

oxygen octahedron [43]. Also the decrease in the peak intensity ratio at 1566 nm to 1540 

nm for the heat-treated samples furnishes that Er3+ ions are in a distorted manner in the 

formed KNbO3 phase. The above results are in conformity with XRD, FESEM, TEM and 

FTIRRS results.  

 Fig. 11 presents representative curves of the room temperature fluorescence decay 

of the emission transition (4I13/2 → 4I15/2) at 1540 nm with an excitation at 980 nm for Er3+ 

ions in as-prepared glass and heat-treated samples for 2 and 50 h. All the curves 

demonstrate a single exponential decay. The fluorescence lifetimes (τf) for all the samples 
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have been estimated from these decay curves and the results of 0, 2 and 50 h duration are 

shown in Table 2. These data indicate a decrease in the lifetime at the start of the heat-

treatment and then an increasing trend with an increase in the heat-treatment duration 

following the similar trend as the emission characteristics. It is clear that the excited state 

lifetime of Er3+ ions initially has decreased from 2656 µs for precursor glass down to 

2316 µs for 2 h heat-treated sample and then noticeably increases up to 4519 µs for 50 h 

heat-treatment. The decrease in the lifetime first and then subsequent increase for further 

increase in heat-treatment duration may be attributed to the possible occurrence of 

surface defects and/or clustering of Er3+ ions in the initial stage which act as 

luminescence quenchers. This may also be the reason for the observed reduction in the 

luminescence intensity of heat-treated glass-ceramics when compared to the as-prepared 

glass (see Fig. 9(a), 9(b)). Dejneka [35] have demonstrated in fluoride glasses that 

clustering thereby quenching occur when the Eu3+-Eu3+ ionic separation is less than 40 Å. 

In the present case, the Er3+-Er3+ ionic separation (Ri) in the precursor glass is found to be 

about 26 Å which was calculated using the relation [44]: 

                                    Ri (Å) = (1/NEr
3+)1/3                                             (3) 

where NEr
3+ is the Er3+ ion concentration which is already provided in Table 1. It is, 

therefore, seen that the Er3+-Er3+ ionic separation (Ri) is in the quenching region. 

Theoretically, the rate of relaxation due to concentration quenching varies as Ri
-6 [44, 

45]. In the initial stages of heat-treatment with the formation of KNbO3 crystal phase, the 

Er3+ ions partitioned into the residual glassy phase by reducing the inter-ionic separation 

less than 26 Å of precursor glasses. This fact results in reduction in fluorescence intensity 

(see curve for 2 h, Fig. 9) due to concentration quenching. Later with the increase of heat-
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treatment time, the Er3+ ions become well organized and finely dispersed in the crystal 

phase, thereby increasing the intensity of fluorescence. Subsequent increase in lifetime is 

due to partitioning of Er3+ ions into low phonon energy (~749 cm-1) KNbO3 crystal from 

high phonon energy (~1128 cm-1) mother silicate glass matrix. This process results in 

reduction in nonradiative decay rate due to multiphonon relaxation thereby rising in 

radiative decay rate. Thus, the measured fluorescence lifetime (τf) may be well explained 

by the following expression [16]: 

                                       τf = 1/(Arad + Wnr)                                        (4) 

where Arad and Wnr are the probabilities for radiative and nonradiative processes 

respectively. The Wnr includes relaxation by multiphonon emission and effective energy 

transfer rates arising from Er3+-Er3+ ion interactions, that is, cross relaxation (CR) and 

energy migration (EM). 

 

4. Conclusions 

 Er2O3 (0.5 wt %) doped KNbO3 nanocrystallites containing glass-ceramics were 

prepared from the glass 25K2O-25Nb2O5-50SiO2 (mol %) by an isothermal crystallization 

at 800oC for different durations. The formation of nano-crystallite of KNbO3 in the glass 

matrix was confirmed by the XRD, FESEM, TEM, FTIRRS and dielectric constant 

measurements. The crystallite size estimated from XRD and TEM is found to vary in the 

range of 7-15 and 14-23 nm respectively. The optical absorption spectra, decay time 

fluorescence spectra of heat-treated glass-ceramic samples demonstrate that the Er3+ ion 

has gradually entered into the KNbO3 crystalline phase. 
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Figure Captions 

Fig. 1. DTA curve of as-prepared precursor glass powder. 

 

Fig. 2. (Color online) Photograph showing the transparency, as laid on writing, of the (a) 

as-prepared glass and heat-treated samples at 800oC for (b) 1, (c) 2, (d) 3, (e) 5, (f) 10, (g) 

25, (h) 50 and (i) 100 h. 

 

Fig. 3. Variation of refractive indices of precursor glass and glass-ceramics obtained after 

heat-treatment for different duration as a function of wavelength. 

 

Fig. 4. (a) XRD patterns of as-prepared glass and heat-treated glasses at 800oC for 

different duration. (b) Variation of crystallite size, as obtained from XRD, as a function 

of heat-treatment time at 800oC of as-prepared glasses. 

 

Fig. 5. FESEM photomicrograph of heat-treated glasses at 800oC for (a) 3 and (b) 50 h 

(scale bar = 100 nm). TEM image of 50 h heat-treated sample (c) bright field image 

(inset: SAED), and (d) HRTEM image of lattice fringe. 

 

Fig. 6. Comparative FTIRR spectra of the precursor glass and heat-treated glasses at 

800oC for 2 and 100 h. Inset shows the reflectivity at 930 and 749 cm-1 of precursor glass 

and heat-treated glasses as a function of heat-treatment time. 
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Fig. 7. Dielectric constant of as-prepared glass and glass-ceramics as a function of heat-

treatment time at 800oC. 

 

Fig. 8. Absorption spectra of the as-prepared glass and heat-treated glasses at 800oC for 

2, 50 and 100 h (a. u. = absorbance unit).  

 

Fig. 9. (a) Visible emission spectra (λex = 377 nm) and (b) near infrared emission spectra 

(λex = 980 nm) of the as-prepared glass and heat-treated glasses at 800oC for 2, 50 and 

100 h (a. u. = arbitrary unit). 

 

Fig. 10. Excitation spectra (λem = 1540 nm) of the as-prepared glass and heat-treated 

glasses at 800oC for 2, 50 and 100 h (a. u. = arbitrary unit). 

 

Fig. 11. (Color online) Decay curves for the 4I13/2 → 4I15/2 transition at 1540 nm under 

excitation at 980 nm of as-prepared glass and heat-treated glasses at 800oC for 2 and 50 h 

(a. u. = arbitrary unit). 
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Table 1 
Some measured and calculated properties of 25K2O-25Nb2O5-50SiO2  
(mol %) glass with 0.5 wt% Er2O3 (in excess)  
 
Properties Corresponding 

value 
Average molecular weight 120.05 
Density, g.cm-3 3.37 
Refractive index 
                        ne (at 546.1 nm) 
                        nF΄ (at 480.0 nm) 
                        nC´ (at 643.8 nm) 

 
1.78076 
1.79612 
1.76688 

Mean dispersion (nF΄
 - nC΄) 0.02924 

Abbe number, ne/(nF´-nC´) 27 
Reflection loss (%) 7.88 
Molar refractivity, RM (cm3) 14.95 
Electronic polarizability, α (cm3) 5.592×10-24 
Er3+ ion concentration, NEr

3+
 (ions/cm3) 

Er3+-Er3+ inter ionic distance, Ri (Å) 
5.41×1019 

26 
Glass transition temperature, Tg (

oC) 681 
Crystallization peak, Tp (

oC) 759 
 
 
 
 
 
Table 2 
Relative intensity ratio of INb-O/ISi-O from FTIRR  
spectra and measured lifetime (τf) of the  
4I13/2 → 4I15/2 emission transition of precursor  
and heat treated (at 800oC) Er3+ doped glasses  
 
Samples Relative intensity ratio, 

INb-O / ISi-O 
Lifetime,  
τf (µs) 

Glass - 2656 
2h 1.06 2316 

50h 1.12 4519 
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Fig. 1. DTA curve of as-prepared precursor glass powder. 

 
 
 
 
 
 
 
 
 

 
 
Fig. 2. (Color online) Photograph showing the transparency, as laid on writing, of the (a) 
as-prepared glass and heat-treated samples at 800oC for (b) 1, (c) 2, (d) 3, (e) 5, (f) 10, (g) 
25, (h) 50 and (i) 100 h. 
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Fig. 3. Variation of refractive indices of precursor glass and glass-ceramics obtained after 
heat-treatment for different duration as a function of wavelength. 
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Fig. 4. (a) XRD patterns of as-prepared glass and heat-treated glasses at 800oC for 
different duration. (b) Variation of crystallite size, as obtained from XRD, as a function 
of heat-treatment time at 800oC of as-prepared glasses. 
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Fig. 5. FESEM photomicrograph of heat-treated glasses at 800oC for (a) 3 and (b) 50 h 
(scale bar = 100 nm). TEM image of 50 h heat-treated sample (c) bright field image 
(inset: SAED), and (d) HRTEM image of lattice fringe. 
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Fig. 6. Comparative FTIRR spectra of the precursor glass and heat-treated glasses at 
800oC for 2 and 100 h. Inset shows the reflectivity at 930 and 749 cm-1 of precursor glass 
and heat-treated glasses as a function of heat-treatment time. 
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Fig. 7. Dielectric constant of as-prepared glass and glass-ceramics as a function of heat-
treatment time at 800oC. 
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Fig. 8. Absorption spectra of the as-prepared glass and heat-treated glasses at 800oC for 
2, 50 and 100 h (a. u. = absorbance unit).  
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Fig. 9. (a) Visible emission spectra (λex = 377 nm) and (b) near infrared emission spectra 
(λex = 980 nm) of the as-prepared glass and heat-treated glasses at 800oC for 2, 50 and 
100 h (a. u. = arbitrary unit). 
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Fig. 10. Excitation spectra (λem = 1540 nm) of the as-prepared glass and heat-treated 
glasses at 800oC for 2, 50 and 100 h (a. u. = arbitrary unit). 
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Fig. 11. (Color online) Decay curves for the 4I13/2 → 4I15/2 transition at 1540 nm under 
excitation at 980 nm of as-prepared glass and heat-treated glasses at 800oC for 2 and 50 h 
(a. u. = arbitrary unit). 
 
 

 


