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Abstract – Here we introduce a variation of the trap model of glasses based on softness, a local
structural variable identified by machine learning, in supercooled liquids. Softness is a particle-
based quantity that reflects the local structural environment of a particle and characterizes the
energy barrier for the particle to rearrange. As in the trap model, we treat each particle’s softness,
and hence energy barrier, as evolving independently. We show that such a model reproduces
many qualitative features of softness, and therefore makes qualitatively reasonable predictions of
behaviors such as the dependence of fragility on density in a model supercooled liquid. We also
show failures of this simple model, indicating features of the dynamics of softness that may only
be explained by correlations.

Introduction. – The connection between dynamics
and microscopic structure in supercooled liquids has be-
deviled the glass transition field for many decades. Re-
cently, however, the field has reached a consensus that
structural heterogeneities are important to the dynamics
of supercooled liquids [1, 2]. Isoconfigurational ensemble
simulations give direct evidence of heterogeneous mobility,
which must be structural in origin [3, 4]. More recently,
machine-learning methods have identified structural vari-
ables that correlate strongly with dynamics [5–19].

Before such microscopic observations, there was already
a consensus that heterogeneity in dynamics is impor-
tant, allowing for the explanation of e.g. nonexponen-
tial relaxation and breakdown of the Stokes-Einstein re-
lation [20, 21]. One particularly simple—and therefore
appealing—phenomenological model of heterogeneous dy-
namics is the trap model [22,23]. In this model, a coarse-
grained region (or a single particle) is presumed to have
some distribution of possible “trap” energies ϱ(E). The
model assumes that the system “escapes” these traps with
an Arrhenius rate characterized by an energy barrier E,
landing in a new trap selected without memory from
a temperature-independent distribution ϱ(E). Although
this model neglects spatial correlations in these energy
barriers, it accounts qualitatively for aging and stretched-
exponential relaxation. It has served as a useful starting
point for powerful models of glass phenomenology, such as

the Soft Glassy Rheology model [24] as well as models of
facilitated thermal relaxation [25–27].

The trap model assumes that particles escape their
traps with a rate e−βE , as if escaping from a trap always
requires crossing a barrier at E = 0. This assumption
connects the dynamics to the energy E and its distri-
bution. There is a natural connection between the trap
model and a particular machine-learned structural vari-
able, called softness, S. This connection arises because
the probability that a particle of a given softness will re-
arrange, P (R|S), has been shown in a wide variety of sys-
tems [6–10, 13, 14, 28] to have an Arrhenius temperature
dependence. This result implies that the softness of a
particle tells us the typical energy barrier, ∆E(S), that
the particle surmounts in order to rearrange. Thus, we
can construct a trap model based on softness, in which
we replace the barriers E in the original trap model with
∆E(S), and introduce an underlying softness distribution
ϱ(S) that replaces ϱ(E) in the trap model.

Any local structural variable that is correlated strongly
enough with the dynamics can be used in place of softness
in the analysis that follows. We focus on softness because
it has already been demonstrated that P (R|S) is Arrhe-
nius [6–10, 13, 14, 28], but any reasonable local predictor
should have this property. Note that other approaches
to studying the dynamics and equilibrium distributions of
particular local structures have been considered [29,30].
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Here we develop the simplest possible model of the dy-
namics of S, namely a trap-like model in which each par-
ticle’s softness (or equivalently, energy barrier) evolves in-
dependently. In spite of the obvious oversimplification in-
volved, we find that this model produces many reason-
able predictions. It provides a simple explanation of how
⟨S⟩ should decrease with temperature and thus how we
may see a larger energy barrier with decreasing T , pro-
ducing a super-Arrhenius dependence of relaxation time
τ on temperature. In a class of model glass-forming liq-
uids, we find that we are able to account for much of the
difference in fragility between different systems using this
simple model. We also show the limits of the trap-like
model, showing how it fails to reproduce some important
qualitative features of dynamical heterogeneity and aging.

Simulation models and methods. – The softness
Si is a linear combination of structural variables that de-
scribe the local structure near particle i. Similarly to [5],
we define M = 166 (or 266, depending on system) struc-
tural variables gα,i, computed using inherent-structure
(IS) positions, that describe the local structure surround-
ing particle i through both density and bond-angle infor-
mation (details in supplement). The softness is then

Si = w0 +
∑

α

wαgα,i, (1)

where w is chosen (“trained”) so that Si is maximally
predictive of whether or not particle i is rearranging.

We study two model supercooled liquids in 3D, for which
softness has previously been shown to correlate with re-
arrangements. The first is the standard Kob-Andersen
Lennard-Jones (KA) system, a mixture of 80% large and
20% small particles [31]. We study systems of N = 10000
particles. Our analysis follows [6]: we train wα using data
from T = 0.47 and apply it at all temperatures studied,
focusing only on large particles, and training wα so that
Si predicts the rearrangement indicator phop. At low T ,
some systems crystallize and are excluded from analysis.

The second system (abbreviated as SS for soft sphere) is
a 50 : 50 bidisperse liquid of of N = 10976 particles with
harmonic repulsion, as studied in [10,32–34]. The fragility
of the model is tuned by adjusting the density. As in [10],
a single vector wα has been trained to define softness at
all temperatures T and number densities ρ studied. We
analyze softness for the small particles. We train S to pre-
dict the rearrangement indicator D2

min (data from [10]),
but unlike [10], compute gα using IS positions.

Note that rearrangement probabilities must be multi-
plied by T -independent factors to convert them to a rate
of rearrangement per unit time (details in supplement).

Here, it is important that softness has a single defini-
tion in each system, instead of a different definition at
each temperature and density. This allows us to predict
properties at one T from observations at another T .
As in earlier analyses [6–14, 28], the probability for a

particle to rearrange within a time interval τR at temper-

ature T , P (R|S, T ), is found to depend roughly exponen-
tially on S ( [6] fig. 2(a), [10] fig. 1.), i.e.

P (R|S, T ) ≈ A(T )eγ(T )S . (2)

Thus, S reveals heterogeneity in rearrangement rates
at a single-particle level. For particles of a given S, the
rearrangement rate appears Arrhenius,

P (R|S, T ) ≈ eΣ(S)−∆E(S)/T , (3)

where ∆E(S) and Σ(S) are temperature-independent fac-
tors which we thus interpret as an energy barrier to re-
arrangement and an entropic contribution to the rate of
rearrangement for a given softness ( [6] fig. 2, [10] fig. 1).
The approximate exponential behaviour of P (R|S) cor-
responds to approximate linearity of Σ(S) and ∆E(S).
Thus, ∆E(S), inferred from observations of rearrange-
ments in a simulation or particle-resolved experiment, re-
alizes precisely the connection between state and dynamics
that is assumed for E in the trap model.

The trap-like model. – Consider a model ofM sites,
each representingm particles, so that N = mM . Each site
i has a softness Si. In the end we will take m = 1 since our
machine-learned softness is defined for single particles.

Rearrangement of single particles is observed to have a
rate which is Arrhenius, with an energy barrier roughly
linear in S, as discussed above. Thus, the simplest pos-
sible dynamical model is spatially-resolved model of inde-
pendent traps. We postulate the existence of a density
ϱ(S) of states for S; since P (R|S) becomes independent
of S above T0 [6], we will find that ϱ(S) = P (S|T ≥ T0).

A site is assumed to “rearrange” with rate

k(S, T ) ≡ 1

τR
P (R|S, T ) = eΣ(S)−∆E(S)/T , (4)

Here τR is the window of time used to measure P(R|S, T ).
When a particle rearranges, we assume that it forgets its
history, and its new softness S′ is drawn from ϱ(S′).
As stated above above this model is formally equivalent

to a trap model; e.g.if ∆E and Σ are both perfectly linear
in S, this is a trap model with a Gaussian distribution of
energy barriers. However, S need not be directly related
to the energy barrier ∆E. Note that unlike the standard
trap model [23], or a model of Gaussian traps in which
the energy variance scales with N as in the random energy
model [35,36], this model contains no sharp transition. [22]

P (S) then obeys the master equation

dPt(S)

dt
= −Pt(S)k(S, T ) +

∫
dS′ Pt(S

′)k(S′, T )ϱ(S).

(5)
To find the equilibrium state of the model, it suffices to

enforce detailed balance. Due to time-reversal symmetry,
P (S|R) is both the distribution of S for particles which
are about to rearrange and for particles which have just
rearranged. Thus, detailed balance requires that
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P (S|R, T ) = ϱ(S). (6)

The equilibrium S distribution at any T is thus

PT (S) ∝ ϱ(S)e∆E(S)/T−Σ(S). (7)

Consistent with earlier results for many systems [5, 7–
11, 28, 37] , the distribution P (S) is roughly Gaussian for
both systems studied here (supplementary material).

Note from Fig. 1 (top) that P (R|S) is not perfectly ex-
ponential in S. To ensure that P (S) is Gaussian while
accounting for some of the deviations from exponential
behavior in P (R|S), we take ϱ(S) to be Gaussian and take

∆E(S) = ϵ0 + ϵ1S + ϵ2S
2 (8)

Σ(S) = Σ0 −
ϵ1
T0

S − ϵ2
T0

S2. (9)

Fig. 1(middle, bottom) shows that these functional
forms for ∆E and Σ are quite accurate. Many systems
(including our KA system and, for sufficiently large ρ, our
SS system) exhibit an “onset temperature” T0 where dy-
namical heterogeneity appears and above which S is no
longer predictive. The relation (eq. 9) between the co-
efficients for ∆E and those for Σ is necessary for these
equations, valid below T0, to smoothly connect to an S-
independent dynamics at T0. This relation even appears
to hold when the inferred T0 is negative [10].
Eqs. 7-9, with the assumption that ϱ(S) is Gaussian

with mean S0 and variance σ2
0 , lead to the predictions

⟨S⟩ = S0 − γ(T )σ2
0

1− 2δ(T )σ2
0

(10)

Var[S] =
σ2
0

1− 2δ(T )σ2
0

, (11)

where

γ(T ) =

{
ϵ1

(
1
T0

− 1
T

)
, T < T0

0, T > T0

(12)

expresses the strength of the exponential correlation be-
tween S and P (R|S), and

δ(T ) =

{
ϵ2

(
1
T − 1

T0

)
, T < T0

0, T > T0

(13)

giving a quadratic correction to lnP (R|S).
Note that above T0, ⟨S⟩ is predicted to no longer depend

on T . Recall that T0 also marks the temperature above
which EIS does not depend on T [38]. Since EIS and S
both reflect the same IS structure, this model thus links
the thermodynamic and dynamical definitions of T0.
Now consider the overlap function and dynamical het-

erogeneity within the model. The mean overlap is

Q(t) =
1

M

∑

i

qi(t), (14)
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Fig. 1: (a,b) P (R|S) for both KA system (T =
0.430, 0.470, 0.550, blue to red) and SS, ρ = 0.82
(T = 0.0045, 0.0055, 0.0065, blue to red). (c-f) ∆E(S)
and Σ(S), obtained by fitting lnP (R|S, T ) to Σ(S) +
∆E(S)/T , for the soft-sphere system (left column) and
KALJ system (right column). In all panels, dashed lines
show quadratic fits to ∆E(S) and Σ(S) under the assump-
tion of a (possibly negative) onset temperature (eq. 8 and
9), which are quite accurate in the relevant range of S.
For SS, Orange pentagons: ρ = 0.82, Green x’s: ρ = 0.78,
Yellow squares: ρ = 0.72, Blue triangles: ρ = 0.65.

where qi(t) = 1 if site i has not rearranged before time
t and qi(t) = 0 if it has. Correlations are measured by

χ4(t) ≡ N VarQ(t). (15)

Because the sites are treated as independent,

Q(t) =

∫
dS P (S)e−k(S)t. (16)

This lacks a closed-form expression, even if we set δ = 0
(eq. 13). Because sites are independent, there are no dy-
namical correlations (beyond grouping together m parti-
cles into one site) and χ4(t) is trivial. Using only this
independence, with no assumptions about P (S) or the
transition rates, one may easily show that [39]

χ4(t) ≡ N
(
Q2 −Q

2
)
= m

(
Q(t)−Q(t)

2
)
. (17)

p-3



S. A. Ridout et al.

The quantity χ4 peaks at some time τχ at a value of χ∗
4;

it follows from Equation 17 that

Q(τχ) =
1

2
(18)

χ∗
4 =

m

4
. (19)

Equation 19 is in agreement with previous counting ar-
guments stating that χ∗

4 should be proportional to the
number of particles m in a “mobile domain”. [40]
Clearly, this model cannot account for the growth of χ∗

4

with 1/T . Doing so requires a model with spatial correla-
tions in S, which will be discussed in a future manuscript.
The first step is to use the trap-like model to calculate

the relaxation time as a function of T . We calculate two
different relaxation times. The first, τQ, corresponds to
the time at which Q(t) drops to 1/e. The second, τχ, is
the position of the peak of χ4(t). These timescales are
generally comparable [2, 40,41]. Analysis of eq. 16 shows

τQk(⟨S⟩, T ) = gQ
(
γ(T )σS , δ(T )σ

2
S , δ(T )σS⟨S⟩

)
(20)

τχk(⟨S⟩, T ) = gχ
(
γ(T )σS , δ(T )σ

2
S , δ(T )σS⟨S⟩

)
. (21)

Thus, the basic timescale of relaxation remains
1/k(⟨S⟩, T ) (see eq. 4), in agreement with previous ob-
servations that τ ≈ 1/P (R|⟨S⟩) [7, 9, 42], but even in the
trap-like model the variance of S gives corrections to this
relation. It is therefore important to calculate gχ and gQ
in eq. 21, which we do by evaluating eq. 16 numerically.

In predictions discussed below, we use the specific values
of γ(T ), δ(T ) predicted for each system. We find that gQ
is an increasing function of γ and δ, while gχ depends
very little on T . Since γ and δ increase with cooling, this
theory thus predicts that τQ exhibits a slightly stronger
super-Arrhenius growth than τχ. To see why, consider
a system where half the sites are very fast and half are
very slow. χ4 peaks when half of the regions rearrange;
therefore it peaks near the fast timescale. On the other
hand, τQ, being defined by Q(τQ) = 1/e ≈ 0.37, will not
be reached until many slow regions have also relaxed.

Relaxation times and fragility. – We now test the
trap-like model against simulation data for both the KA
and SS systems. For each system, we define the underlying
softness distribution, ρ(S), to be Gaussian with the mean
and variance of S obtained from simulations at a single
high temperature that is close to T0 when it is positive.

As shown in eq. 10, the model predicts that ⟨S⟩ de-
creases with 1/T more quickly for larger ϵ1. In the SS sys-
tem, Fig. 1 shows that ϵ1 increases with density ρ; accord-
ingly, fig. 2(a) shows a stronger dependence of ⟨S⟩ on Tg/T
at larger ρ (corresponding to increasing fragility [10]); this
correct trend with density is quantified in fig. 3(a). The
agreement is imperfect, and the curvature of ⟨S⟩ vs. 1/T
is not predicted well. In the KA system (fig. 2(b)), the
change of ⟨S⟩ with T is overestimated.
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σ
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(d) KA

Fig. 2: Mean softness ⟨S⟩, and standard deviation σS , vs.
inverse temperature. Dashed lines show the prediction of
the trap-like model. (a): ⟨S⟩ in the SS system. The model
overestimates the change in ⟨S⟩ at most densities, while
underestimating it at ρ = 0.65. (b): ⟨S⟩ in the KALJ
system. In this system, the dependence of ⟨S⟩ on β is
strongly overestimated. (c,d): σS in (SS, KA) systems,
showing very weak T -dependence. For SS, Orange: ρ =
0.82, Green: ρ = 0.78, Yellow: ρ = 0.72, Blue: ρ = 0.65.

In the trap-like model, the standard deviation of S de-
pends weakly on temperature. Fig. 2(c,d)) shows that this
is true in the MD data, and the prediction is reasonably
accurate at moderate T , except at ρ = 0.65 (SS) .

We now turn to the predictions of relaxation times. Our
model only considers transitions of the system between
inherent states, neglecting the thermal fluctuations within
a cage. Thus, the most direct comparison may be made
to the Q or χ4 computed on IS positions. We find that
the IS χ4 in the high-density soft-sphere system behaves
poorly at high T (approaching T0), and thus here choose
to focus on τQ computed from IS positions. τχ at ρ = 0.65
is discussed in the supplement.

The predicted τQ is shown for both systems in fig.
4(a,b). It is clear that not only does the trap-like model
underestimate the relaxation time τQ for the SS system
and overestimate it for the KA system, it also strongly
underestimates fragility for SS. To quantify this, we fol-
low Angell [43] to define the fragility index m as

m =
d ln τ

dTg/T

∣∣∣∣
Tg

. (22)

In the soft-sphere system, we take Tg to be the tem-
perature at which a parabolic-law extrapolation [44] of τ
reaches 107 in the MD data; for the simulations, m is com-
puted from this extrapolation.
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Fig. 3: (a) Change of mean softness between highest and
lowest temperatures, per unit inverse temperature, as a
function of density ρ. Solid: MD data, dashed: trap-like
model. Both the trend with density and the magnitude of
the change are predicted surprisingly well by the model.
(b) Fragility index m as a function of ρ. The trap-like
model underestimates the fragility at all densities, but cor-
rectly predicts that fragility increases with density.

In Fig. 3(b), we compare the fragility m computed from
the MD data to the trap prediction for the soft-sphere
system. Interestingly, the trend with density is very well
captured by the model even though m is consistently un-
derestimated. Past results have emphasized the apparent
correlation between τ and 1/P (R|⟩S⟩) [6, 7, 42]:

τ ∼ 1/P (R|⟨S(T )⟩, T ). (23)

We have recently noted, however, that careful analysis
shows some deviation from this relation at low T in the
soft-sphere system [10]. Furthermore, we have seen above
that even in the traplike model, with no facilitation or
other correlations between particles, this simple relation
is not expected to hold for τQ. The consistent under-
estimation of m, however, indicates that even with the
traplike model’s correction to eq. 23, a model based on in-
dependent relaxation of particles with rates derived from
P (R|S, T ) still underestimates fragility for the SS system.
In the KA system, taking Tg = 0.40, we findm is slightly

overpredicted by the model (m = 45.2 vs. m = 37.2).
The shape of Q(t) is not well predicted by the trap-like

model. Fig. 4(c,d) show that, at low T , the model under-
estimates the stretching of Q in the SS system while over-
estimating it in the KA system (details in supplement).

Aging. – In our MD simulations, we study aging by
preparing a system at a high temperature TI, then con-
necting it to a cold thermostat at TF and watching its
structure and relaxation time evolve with age or waiting
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Q
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)

(c) SS
ρ = 0.82
T = 0.0045
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1.00

Q
(t
/τ

)

(d) KA
T = 0.42

Fig. 4: (a,b) Prediction of τQ from the trap-like model
for all systems. (b) As discussed in the text, τ is over-
estimated in the KA system , while (a) in the SS system
τ and the fragility m are underestimated at all densities,
although the trend with density is correct (fig. 3 (b.)). (c)
The model underestimates the stretching of Q(t) for the
SS system, while (d) overestimating it for KA. Colors and
symbols as in fig. 1, dashed lines are trap predictions.
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(a) SS, MD
ρ = 0.82

10−2 102 106
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(d) KA, Trap

Fig. 5: Evolution of ⟨S⟩ during aging from TI to TF. (a):
MD data, SS at ρ = 0.82; TI = 0.0080, TF = 0.008, 0.007,
0.006, 0.0055, 0.005,0.0045, 0.004, 0.0035 (red to blue).
(b): MD data, KA system. TI = 1.00, TF = 0.70, 0.60,
0.55, 0.53, 0.47, 0.40, 0.35 (red to blue). Both systems
have an intermediate time regime where ⟨S⟩ ages logarith-
mically and the curves for different values of TF roughly
overlap. (c): Trap-like model, SS system at ρ = 0.82. (d):
Trap-like model, KA system. As discussed in main text,
the model fails to capture the collapse of the curves.
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time since the quench, tw [7,45]. In principle, understand-
ing an aging system requires knowing its entire history.
However, earlier work [7] found that S behaves as an “in-
ternal variable” that captures the relevant history depen-
dence so that the system can be characterized by the usual
state variables with the addition of S [7]. In particular, the
relation between structure and dynamics, as encapsulated
by P (R|S, T ), was found to be independent of age.
⟨(tw)⟩ has another remarkable behavior. The top row

of Fig. 5 shows MD data for (a) SS, ρ = 0.82 and (b) KA,
for systems prepared at fixed TI and quenched to different
TF. The KA data agree with previously published results
[7]. In both systems, the ⟨S(tw)⟩ curves for different TF

lie on top of each other in the logarithmic aging regime.
To see why this is surprising, consider two systems at

the same value of ⟨S⟩, but connected to thermostats with
different values of TF. Particles of a given S rearrange less
in the colder system [7]. Thus, it seems that ⟨S⟩ would
evolve more slowly with age for the colder system. The
collapse of ⟨S⟩ for different TF shows that this is not the
case—somehow, although there are fewer rearrangements
at lower TF, they are more effective in lowering ⟨S⟩ so that
⟨S⟩ evolves at the same rate for different TF.
We study aging in our trap-like model numerically by

solving the master equation 5 for a fine discretization of
S and t. We find that ⟨S⟩ does have a logarithmic aging
regime (bottom row, Fig. 5) for both systems, as seen in
MD (top row, Fig. 5). However, fig. 5(c,d) indeed shows
that in the trap-like model, ⟨S⟩ decreases more slowly
for colder systems. Thus, the collapse seen in MD data
(Fig. 5(a,b)) is not predicted by the trap-like model, show-
ing that the collapse of ⟨S(tw)⟩ must arise from correla-
tions neglected in this model.

Discussion. – The softness formulation of the glass
problem lends itself naturally to a traplike model since
there is a well-defined energy barrier to rearrangements
that depends on softness, ∆E(S). The traplike model
neglects the effects on energy barriers of correlations be-
tween particles, so the degree to which the traplike model
captures, or does not capture, observed behavior gives us
insight into the importance of correlations and facilitation.

The traplike model is remarkably successful in capturing

the rate of change of mean softness,
∣∣∣∆S
∆β

∣∣∣, with inverse

temperature β, as a function of density ρ in soft-sphere
systems (fig. 3(a.)). Likewise, it captures quite well the
trend of increasing fragility m with ρ in those systems.
However, the traplike model tends to underestimate ⟨S⟩,

predicting a stronger decrease with decreasing T than is
observed (Fig. 2, top row), except for SS, ρ = 0.65.
We turn now to predictions for the relaxation time. The

traplike model underpredicts/overpredicts the relaxation
time τQ for the SS/KA systems, respectively (fig. 4). It
is easy to see why the traplike model might predict a re-
laxation time that is too high. First, as discussed above,
|d⟨S⟩/dT | is overestimated in the KA system. Thus, the
predicted energy barriers are too high at low T , giving

prediction of τ that is too high. Second, in reality par-
ticles’ S changes when their neighbours rearrange. This
is a form of facilitation, which should shorten the relax-
ation time [6]. Consistent with this picture is the excessive
stretching of Q(t) predicted by the trap-like model for the
KA system (fig. 4(d)), which should be reduced by facili-
tation allowing the hardest particles to relax sooner.

The quality of S as a predictor has an important effect
on the predictions of the trap-like model. A better predic-
tor should yield a broader range of energy barriers, and
thus, in the trap-like model, predict greater heterogeneity
and fragility. The underprediction of fragility m in the
SS model could result from this effect. Note that S is a
less accurate predictor of rearrangements in the SS model
than in the KA model [10]. This is consistent with the fact
that the predicted m is too low for the SS system but al-
most correct for the KA system, as well as the insufficient
stretching of Q(t) predicted for the SS system (fig. 4(c)).
We have only compared the trap-like model to simu-

lations that exhibit behavior ranging from Arrhenius to
super-Arrhenius. The trap-like model predicts a decrease
in ⟨S⟩ with T 1, which would appear to inevitably lead to
super-Arrhenius growth of the relaxation time. However,
there are systems (such as the SS system at lower densi-
ties) that exhibit sub-Arrhenius growth [32]. We note that
sub-Arrhenius behavior could originate in the trap-like
model from the prefactor (an attempt frequency) in eq. 4,
which must depend on the mean-squared velocity, which
scales as

√
T . This prefactor can lead to sub-Arrhenius

growth if ∆E(S)/T is small and thus the contribution of
changes in ⟨S⟩ to τ is very small. One should check for this
prefactor in other models where P (R|S, T ) is known to cor-
relate with a sub-Arrhenius relaxation time [9]. Similarly,
the trap-like model cannot account for a fragile-to-strong
crossover with cooling (as suggested for the KA system
in [46]) without e.g. a non-Gaussian distribution of traps.
Note that in an MD model of silica with a fragile-to-strong
crossover, P (S) is clearly non-Gaussian [13].

Recent work indicates that structure retains small pre-
dictiveness of dynamics above the nominal onset temper-
ature [47], suggesting small corrections to eqs. 12,13 near
T0. This will smooth the crossover in ⟨S⟩ predicted by the
trap-like model. This is consistent with the fact that T0

marks a crossover in IS energy, not a sharp transition [38].

Conclusions. – Past work has suggested that a
machine-learned structural variable, softness S, can lead
to a significant simplification of our understanding of the
dynamics of supercooled liquids by introducing a distri-
bution of local energy barriers to rearrangements. In this
picture, fragility is connected to the temperature depen-
dence of ⟨S⟩. We have shown how a simple model of the
dynamics of S, formally similar to the trap model, qual-
itatively explains the dependence of ⟨S⟩ on T , predicting
the relative fragility of different glassformers within the

1Unless there exists a system in which T0 > 0 but it is the entropic
effect of structure, rather than the energetic effect, which dominates.
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same family. We have also shown how this simple model
severely fails to describe interesting features of the dy-
namics, including aging of ⟨S⟩, suggesting a clear need for
a model which includes facilitation through the effects of
rearrangements on the softness of neighbouring particles.
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Training of Softness. – Our training of softness
roughly follows references [6, 10].

In both systems we use the radial structure functions

G(i;µ, σ) =
∑

j|rij<σmax

e−(rij−µ))2/σ2

. (S1)

In the KALJ system we take σ = 0.05σAB and µ =
0.05σAB , 0.1σAB , . . . , 5σAB . In the soft-sphere system we
take σ = 0.1σAA and µ = 0.1σAA, 0.2σAA, . . . , 5σAA. In
both cases σmax is equal to the largest value of µ.

We also use the angular structure functions

Ψ(r; ξ, λ, ζ) =
∑

j,k|rij ,rjk<σmax

e−(r
2
ij+r2jk+r2ik)/ξ

2

(1 + λ cos θijk)
ζ
, (S2)

with the parameters ξ, λ, and ζ as in [5]. Thus, the
only difference from [5,6] is that in the KA system we use
more finely-spaced radial structure functions.

For the KALJ system, a training set is constructed at
T = 0.470. Particles are labelled as rearranging if they
have phop > 0.6, and labelled as non-rearranging if they
have phop < 0.01 for a time of 1000τ ≈ 2τα. Equal-
sized random samples are taken of rearranging and non-
rearranging particles. The definition of phop, and the use
of IS positions to compute both both phop and the struc-
ture functions, are the same as in [6].

For the soft-sphere system, a training set is constructed
using an equal mixture of data from ρ = 0.65, T = 0.00065
and ρ = 0.82, T = 0.0045. These state points have sim-
ilar relaxation times, making it reasonable to construct
a mixed training set which draws rearranging and non-
rearranging examples from them equally. Particles are la-
belled as rearranging if they have D2

min > D2
min,0 over a

window of ∆t = 12, and labelled as non-rearranging if
they have D2

min < D2
min,0 over a time window of 10τα. For

each density D2
min,0, is chosen such that 1% of particles

are rearranging. The structure functions are computed
using inherent structure positions. Aside from defining
structure functions using IS positions, this matches [10].

In both cases the SVM is trained using a squared-hinge
loss with a penalty parameter C = 1, which results in a
cross-validation accuracy of 93% in the KALJ system and
83% in the soft-sphere system. As in [10], the soft-sphere
hyperplane achieves similar test accuracy on intermediate
densities which were not included in the training set, at
temperatures chosen to have a similar relaxation time.

P (S) for all systems. – Figure S1 shows P (S) for
all systems, which is roughly Gaussian in agreement with
past work.

P (R|S) for all systems. – As in [6, 10], rearranging
particles were defined either by having phop > 0.2 (KA) or
D2

min > D2
min,0 (SS).

Fig. S1: Distribution of P (S) for all systems is approxi-
mately Gaussian. From high temperatures near T0 (red)
to low temperatures (blue). Temperatures: SS ρ =
0.65: T = 0.001,0.0009,0.0008,0.00072,0.00065,0.00050,
ρ = 0.72: T = 0.006,0.005,0.0045,0.004, 0.0035, 0.003,
0.0025, 0.0023 , ρ = 0.78: T = 0.007, 0.006, 0.0055, 0.005,
0.0045, 0.004, 0.0037, ρ = 0.82: T = 0.007, 0.0065, 0.006,
0.0055, 0.005, 0.0045, KA: T = 1.0, 0.70, 0.60, 0.55, 0.47,
0.45, 0.43, 0.42
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Fig. S2: Arrhenius fits to P (R|S) for T < T0. Each curve
is a different softness bin. (SS: S = −1, −0.2, 0.6, 1.4, 2.2.
KA: S = −1.5, −1.1, · · · , 1.7)

Figure S2 shows Arrhenius fits to P (R|S, T ), used to
determine the ∆E(S), Σ(S) shown in main-text figure 1.
Note the deviation at high-T ; these high-T points are not
included in the fit. Figure S3 compares the final fit (forcing
∆E and Σ to be quadratic in S and connected via an
onset temperature T0) to P (R|S) at all T < T0, showing
reasonable agreement.

Fig. S3: P (R|S) vs. S, compared to the final Arrhenius
fit with ∆E(S), Σ(S) quadratic functions of S (main text
eq. 8, 9), constrained to become independent of S at a
temperature T0. Temperatures as in fig. S2
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Rescaling of rearrangement rate. – Predictions of
how P (S) depends on T are independent of any rescaling
of k(S, T ) by a constant factor, e.g. a timescale. However,
comparison of relaxation times to simulation requires fix-
ing an absolute timescale.

Converting P (R|S) into a rearrangement rate requires
dividing by a timescale. In the case of rearrangements
defined using D2

min this is simply the time interval over
which D2

min is computed. In the case of phop, however, it
must be the average duration of time for which a single
rearrangement results in phop being above the threshold.
Note that this is different than the conversion timescale
used in past work [6].

Secondly, the overall rate of rearrangements may be dif-
ferent when measured using D2

min or phop than using dis-
placement, as they tend to filter out many events.

To account for both of these effects, we rescale P (R)
at all temperatures by a temperature-independent factor
decided by matching τ at a single high temperature.

Finally, we note that, if P (R|S, T ) ≈ 1 it would seem
more correct to take e.g. P (R|S, T ) = 1 − e−k(S,T )τR ; we
find, however, that if P (R|S, T ) is close to 1, which only
occurs close to the onset temperature T0, then P (R) de-
viates from Arrhenius behavior even with this correction;
we do not include such high temperatures in the fit.

τQ, τχ, and the shape of Q(t). – As discussed in the
main text, the trap-like model (1) predicts that τχ = τ1/2,

defined as Q
(
τ1/2

)
= 1/2, and (2) makes a prediction for

the ratio τQ/τ1/2 which grows as temperature decreases.
We have already seen in the main text that the trap-like

model overestimates the stretching of Q(t) in the KA sys-
tem and underestimates it in the SS systems. Figure S4
elaborates on these facts by showing τQ/τ1/2 and τχ/τ1/2
as a function of inverse temperature. In the KA system
we see that (1) at moderate supercooling, τχ = τ1/2 holds,
and (2) indeed, τQ/τ1/2, related to the degree of stretch-
ing of Q, grows much less with cooling than the model
predicts. On the other hand, in the SS system we see
that τχ = τ1/2 essentially never holds, and that τQ/τ1/2
is larger, and grows faster with cooling, than predicted
by the trap-like model. These facts are consistent with
the picture discussed based on the stretching of Q(t) at a
single temperature in the main text.

Fig. S4: Ratios τχ/τ1/2 (circles) and τQ/τ1/2 (squares),
for (a) KA and (b) SS, ρ = 0.65. Dashed lines are trap
predictions. The comparison between these predictions
and MD data is discussed in the supplementary text.
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