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Ethanol sensors with effective and selective sensitivity are extensively used by traffic

police to detect drunken drivers, in wine industries for controlling the fermentation

process, food package testing, different medical applications etc. Orthorhombic phase

pure α − MoO3 nanoparticles were synthesized via facile sol-gel technique to ethanol

sensor. It was observed that the gas sensing response of the sample toward 100 ppm of

ethanol vapor is 59% at 350
◦

C. The response and the recovery time of the gas sensor

toward 100 ppm ethanol vapor are found to be 34 s and 70 s, respectively. The main

obstacle for a gas sensor to be an excellent breath analyser is to remain insensitive toward

the main interfering agent of exhaling human breath i.e. moisture. Prepared sensor is

highly selective and shows almost no response toward saturated moisture.

Keywords: α −MoO3, nanoparticles, sol-gel, ethanol vapor, sensitivity

INTRODUCTION

Nowadays due to the increase in environmental pollution and health hazards there is an increase
in the demand for efficient chemical sensors to monitor environment (Wang et al., 2011a; Chao
et al., 2012; Yang et al., 2013). Also, sensors are now considered as promising candidate for human
exhale breath analysis to monitoring diseases. Acetone, alcohol, ammonia and so on, are some of
the volatile organic compounds (VOCs) present in our breath (Guo et al., 2014; Xua et al., 2013;
Tomer and Duhan, 2016). So, based on their elevated concentration in breath lots of diseases
can be diagnosed which is very important to monitor human health (Endre et al., 2011; Reyes-
Reyes et al., 2015; Brannelly et al., 2016). Among these VOCs ethanol is one of the widely studied
pollutants. Accurate ppm level ethanol detection is quite difficult. Detection of ethanol vapor is
very important for traffic police to detect drunken drivers, to control the fermentation process,
etc. However, detection of a single target analyte amidst 1000 other volatiles (some of which could
be cross-interfering) remains a challenge for the researchers. GC-MS, ion spectrometry etc. are
traditional gas analysis tools. However, they are costly sophisticated and requires skilled manpower
for operation. Need of the hour is metal oxide semiconductor based gas sensor which can be use as
a breath analyzer.

Metal oxide semiconducting nanoparticles are considered to be the most efficient and promising
material for gas sensors due to the presence of higher oxygen vacancies and surface area (Philip
et al., 2006; Brezesinski et al., 2010; Greiner et al., 2013). There are many materials that are known
to detect ethanol in ppm-ppb level. An n-type semiconducting pure orthorhombic molybdenum
trioxide (MoO3) nanoparticle delineate lots of astonishing applications e.g., catalysis, energy
storage, gas sensors etc (Chen et al., 2000; Rahmani et al., 2010; Sui et al., 2015; Yan et al.,
2015). MoO3 stands out as it regards to ease of synthesis, excellent sensitivity, selectivity, and
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FIGURE 1 | Schematic of gas sensing measurement.

FIGURE 2 | TGA analysis of as prepared MoO3 gel from room temperature to

1,000◦C.

FIGURE 3 | X-ray diffraction pattern of α-MoO3 calcined at 500◦C.

excellent anti-aging properties. Work by Zadeh et al. delineates
that Zn doped MoO3 shows only 20% sensitivity toward 100
ppm of ethanol (Mousavi-Zadeh and Rahman, 2018). Another

work by Mandal et al. demonstrates excellent ethanol sensitivity
of MoO3 nanobelts and nanofibres synthesized via hydrothermal
route (Mandal et al., 2019). There are some literature which
proves that MoO3 nanoparticles are very good sensing elements
(Sun et al., 2017; Yang et al., 2017).

In the present work nanocrystalline phase pure α-
MoO3 has been prepared using a facile sol-gel route.
The phase purity and morphology of the sample were
confirmed by analyzing it using different sophisticated
tools namely thermogravimetric analysis (TGA), X-ray
diffraction analysis (XRD), Fourier Transform Infrared
Spectroscopy (FTIR), Ultraviolet-vis (UV-vis) spectroscopy,
and field emission scanning electron microscopy (FESEM),
transmission electron microscopy (TEM). The sufficiently
good sensitivity of pristine MoO3 toward ethanol is
reported here.

EXPERIMENTAL

Material Preparation
α- MoO3 nanoparticles have been prepared by using facile sol-gel
route (Ganguly andGeorge, 2007). At first 6.17 gm of ammonium
heptamolybdate (NH4)6Mo7O24·4H2O, Merck) was added in
200ml of distilled water and stirred it for 15min to dissolve the
precursor completely. Then 1.05 gm of citric acid monohydrate
(HOC(COOH)(CH2COOH)2 · H2O, Sigma aldrich) was added
to the above solution. The above solution was stirred until the
acid gets dissolved. After this the solution was kept over a hot
plate at 60◦C and stirrer continuously. Then requisite amount of
ammonium hydroxide (NH3OH, Merck) was drop wise added
to the above solution with constant stirring to keep the solution
pH between 7 and 8. After that we left the solution on the hot
plate until a thick gel is formed. Then the gel was kept in a
furnace overnight at 120◦C for drying. At last we calcined the
material at 500◦C for 4 h and collected the powdered sample for
further use. It is to be noted here that the pH of the solution
implies a lot of effect on themorphology of the product. There are
some articles on the synthesis of α-MoO3 nanostructures which
describes the pH dependency of the sample on its morphology. Li
et al. in his works very clearly showed the pH dependent growth
of different morphology preparation of α-MoO3 nanoparticles
(Chao et al., 2012). Again Parwiz et al. delineates that how size
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FIGURE 4 | (A) FTIR analysis of phase pure α-MoO3 nanoparticles, (B) BET surface area plot.

FIGURE 5 | Tauc plot of α-MoO3 nanoparticles calcined at 500◦C.

of the particles can be controlled on changing the pH of the
solution (Yang et al., 2013).

Characterization
Using a NETZSCH 449C the thermogravitic analyser (TGA) of
MoO3 was performed from 25◦ to 1,000◦C with a heating rate
of 10◦C/min. The XRD analysis of the sample was carried out
using X’Pert pro MPD XRD (PANalytical) diffractometer fitted
with Cu Kα radiation. Band gap of the sample was estimated
from light absorption ability plot using a UV-Vis spectrometer
(CECIL Aquarius 7200). FTIR absorption spectra of the samples
were studied using a Nicolet 380 FTIR spectrometer. A Carl Zeiss
Supra 35 VP FESEM was used to conduct the morphological
study in detail. The microstructural characterization study was
undertaken using a Tecnai G2 30ST (FEI) transmission electron
microscope (TEM). Current voltage (I-V) measurement was
performed using a Agilent B2901A precision source meter at
different temperature. For sensitivity study with different VoCs
at various concentration a computer interfaced Agilent U1253A

multimeter was used. A schematic (Figure 1) for gas sensing
study has been provided for better understanding.

RESULTS AND DISCUSSION

Structural and Morphological Analysis
TGA analysis of the as-prepared gel in the temperature range
from room temperature to 1,000◦C was as shown in Figure 2. It
shows that the material at first shows 5% weight loss up to 100◦C
which can be ascribed to loss of water present in the sample.
Then there is 30% cumulative weight loss up to 432◦C and 80%
cumulative weight loss between 722◦ and 910◦C. These weight
losses are due to combustion of citric acid and volatilisation of
the material itself, respectively.

The X-ray diffraction pattern of α-MoO3 calcined at 500
◦

C
was shown in Figure 3. All the prominent peaks matched well
with standard data (JCPDS card no. 35-0609) which confirms the
formation of orthorhombic phase pure α − MoO3. The graph
shows no extra peaks from any other impurity phase.

Figure 4A shows the FTIR pattern of pure phase α − MoO3

nanoparticles calcined at 500◦C. Three strong vibrations peaks
were detected at 588, 880 and 995 cm−1, associated, respectively,
with the stretching mode of oxygen linked with three metal
atoms, the stretching mode of oxygen in Mo–O–Mo units,
and the Mo=O stretching mode of a layered orthorhombic
α-MoO3 phase (Chiang and Yeh, 2013). The wavenumbers
at 1,400, 1,635, 1,936, and 3,135 cm−1 are due to different
stretching, vibration and bending modes of surface adsorbed
water molecules, respectively. BET surface area of α − MoO3

nanoparticles calcined at 500◦C is as shown in Figure 4B. The
surface area calculated from the graph of the sample comes to
be 2.360 m2/g. Presence of various bonds indicates the growth of
desire phase.

UV-Vis absorption study was carried out to get the
information of energy ban structure. Figure 5 delineates the Tauc
plot of α − MoO3 nanoparticles for determining the energy
bandgap. The energy bandgap of bulk MoO3 is around 3.02 eV
and the estimated bandgap of this sample comes to be around
3.75 eV. As compared to the bandgap of bulk MoO3 there
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FIGURE 6 | α-MoO3 nanoparticles calcined at 500◦C (A) FESEM image, (B) TEM image, (C) EDAX analysis.

FIGURE 7 | IV-measurements of α-MoO3 nanoparticles at room temperature,

270◦C and 370◦C.

is a blue shift in this sample due to the decrease in particle
size (Patil et al., 2011).

FESEM micrograph of the synthesized α − MoO3

nanoparticles is shown in Figure 6A. It was found that the
particles tried to form a thin plate-like structures. Also they
are agglomerated in nature. This plate-like structure will be
more effective to interact with the gas analyte. The TEM image
in Figure 6B is similar to the FESEM image which shows that
the sample is not completely spherical but plate-like structure.
The EDAX image (Figure 6C) in the above figure confirms the
absence of any other elements other than Mo and O. Since the
sample was mounted on a carbon-coated copper grid so C and
Cu peaks were visible in the graph.

Electrical and Gas Sensing Study
Since the prepared sensors are chemiresistive in nature; we
have investigated the electrical transport behavior before its
gas sensing study. Current-voltage (I-V) study of the sensor at
ambient as well as different higher temperature is displayed in
Figure 7. IV-characteristic measurement is very important to

FIGURE 8 | Temperature vs. response (%) plot for α-MoO3 nanoparticles for

100 ppm ethanol.

check the semiconductor-metal contact of the sensor element. I-
V curve demonstrate good linear behavior at higher temperature
which implies that the contact will remain the good if the
sensor is operated at this temperature range. We have observed
an ohmic behavior in the voltage range from −40V to +40V
up to temperature around 370◦C. Furthermore, no asymmetry
is observed between direct and reverse regimes. The material
exhibits semiconducting nature as the resistance of the material
decreases with increasing temperature.

For gas sensing study the prepared sample was ground
thoroughly and mixed well with iso-propyl alcohol used as a
binder. Then this paste was coated on the hollow aluminum tube
which is electrode at with the gold paste at the two ends and
connected to platinum wires of 0.1 mm diameter.

nichrome wire was inserted in the tube for heating the sensor
element. Now the substrate was welded to stainless steel pins
attached to a polymeric sensor head. The sensor head is covered
with 200µm mesh polymer net to protect the sensor from dust
and other external particles (Chakraborty and Pal, 2017, 2019).
Prepared sensor module was inserted in an indigenously built
set up for sensing measurement. Figure 8 shows the response
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FIGURE 9 | Dynamic response curve of α-MoO3 nanoparticles toward, (A) 100 ppm of ethanol, (B) 50 ppm of ethanol, at 350◦C.

FIGURE 10 | Selectivity checks of α-MoO3 nanoparticles at operating

temperature (350◦C).

(%) of the sensor with the increasing operational temperature
from 310◦ to 410◦C toward 100 ppm of ethanol vapor. The
operating temperature of the material for ethanol sensing comes
out to be 350◦C at which it shows maximum sensitivity. The
response (%) at first increases with the increasing temperature
then reaches saturation and then again starts to decrease. This
behavior is normal for metal-oxide based sensors (Chakraborty
and Pal, 2019).

The dynamic response curve shows the reproducibility of the
sensor, which is completely reversible and very much required
for sensing application. Figures 9A,B gives the resistance vs.
time plot for 100 and 50 ppm ethanol, respectively. The
response percentage of the sensor was calculated using the
relation (1),

S(%) = (Rair − Rgas)/Rair (1)

It was observed that the sensors delineated a good response
of 59% toward 100 ppm of ethanol at 350◦C. The response
time and recovery time of the sensor are calculated
to be 34 and 70 s, respectively. The base resistance of
the sample remains almost constant throughout the
whole process.

Selectivity is another important property of gas sensors.
Figure 10 shows the selectivity of the sensing elements toward
saturated ethanol and other VOCs like acetone and ammonia.
The sensing performance was checked in the presence of
moisture as it is an important interfering agent while considering
for breathalyzer. The selectivity curve demonstrates that this
sensor is very much selective toward ethanol vapor. The
sensitivity of a particular material depends on its surface area,
topology, morphology, defect states, and operating temperature.
Though the material remains same if we change the operating
temperature, morphology then the selectivity of the sample may
change. The operating temperature plays a vital role in selecting
gas analyte because the activation energy to break the gas analyte
over the sensing material is different for different gas. The
operating temperature for ammonia detection is higher around
400◦ to 450◦C.

Gas Sensing Mechanism
MoO3 is an n-type metal oxide semiconductor with lots of
lattice oxygen vacancies. Since gas sensing depends on the
surface adsorbed oxygen molecules so here surface oxygen
vacancies (interstitial oxygen and oxygen vacancies) play the
main role. There is a coexistence of interstitial oxygen and
oxygen vacancies for a surface defective MoO3 (Mandal
et al., 2019). On the interaction of these oxygen defects
with the ethanol, there is a release of free electrons in the
conduction band. This oxygen vacancy activates the –CO and
OH bond of ethanol and dehydrogenation takes place (Mandal
et al., 2019). This will, in turn, increase the free electron
concentration in the conduction band and hence the resistance
will decrease.
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CONCLUSION

We have successfully grown pure α-MoO3 nanoparticles
using the facile sol-gel technique. It was observed that
the orthorhombic phase of MoO3 shows a good response
toward ethanol vapor in compared to acetone and ammonia.
The gas sensors based on MoO3 manifest proficient
response of 59% toward 100 ppm of ethanol vapor
with fast response (34s) and recovery time (70 s) at the
operating temperature 350◦C. It also shows insensitivity
toward moisture which is very important if used as
breath analyzer.
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