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The pursuit of appropriate, biocompatible materials is one of the primary challenges

in translational bioprinting. The requirement to refine a biomaterial into a bioink places

additional demands on the criteria for candidate biomaterials. The material must enable

extrusion as a liquid bioink and yet be capable of maintaining its shape in the post-printing

phase to yield viable tissues, organs and biological materials. Plant-derived biomaterials

show great promise in harnessing both the natural strength of plant microarchitecture

combined with their natural biological roles as supporters of cell growth. The aim of

this review article is to outline the most widely used biomaterials derived from land

plants and marine algae: nanocellulose, pectin, starch, alginate, agarose, fucoidan, and

carrageenan, with an in-depth focus on nanocellulose and alginate. The properties that

render these materials as promising bioinks for three dimensional bioprinting is herein

discussed alongside their potential in 3D bioprinting for tissue engineering, drug delivery,

wound healing, and implantable medical devices.

Keywords: plants, algae, 3D bioprinting, biomaterial, tissue engineering, drug delivery, wound healing

INTRODUCTION

3D bioprinting is a rapidly evolving field of biomedicine, merging the disciplines of
tissue engineering, materials science and 3D printing technologies to yield viable biological
structures in customized spatial arrangements. The implications of the technology are immense,
lending itself to fuel advancements in fields such as drug delivery, reconstructive and
transplantation surgery, and implantable medical devices (Jovic et al., 2018).

A primary challenge facing the translational potential of bioprinting for medical use is the
pursuit of appropriate, biocompatible materials (Malkoc, 2018). Historically, a variety of materials
have contributed toward the advancement of biomedicine, with the most noteworthy candidates
including alloys, ceramics, metals, and composites (Le May et al., 1975). Although the desired
properties for biomedical application may vary between materials, the fundamental requirements
for in-vivo implementation remain universal. Successful tissue engineering demands that an
optimal scaffold should interface with biological systems to support cell growth whilst displaying
biocompatibility, non-toxicity, and providing the mechanical support to emulate natural tissue
macro and microarchitecture (Drury and Mooney, 2003; Gungor-Ozkerim et al., 2018). The
requirement to refine a biomaterial into a bioink places additional demands on the criteria
for candidate biomaterials. The material must enable extrusion as a liquid bioink and yet be
capable of maintaining its shape in the post-printing phase to yield viable tissues, organs, and
biological materials.
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The search for a biomaterial with the appropriate balance
of biological and mechanical factors is often fraught with
conflict (Chimene et al.). Synthetic materials, such as plastics,
traditionally convey superiority in addressing the mechanical
properties required to support tissue growth and can be easily
modified to augment their printability, viscosity, and strength.
The major caveat of such materials lies in their restricted
bioactivity: limited cell adhesion and lack of extracellular matrix
mimicry translate to a limited capacity to support the biological
components of cell growth (O’Brien, 2011). Furthermore,
synthetic materials are often non-degradable which presents
the risks of extrusion, immunogenicity, and impedance of de
novo tissue formation (Sarkar et al., 2017). Of those that
are degradable, toxic by-products may be released during the
degradation process, presenting a risk of harm when implanted
into humans.

With the advent and evolution of nanotechnology, there
has been a progressive focus on the use of natural materials
for a variety of biomedical applications. Additionally, this
rapidly growing industry has further highlighted the need for
environmentally friendly biomaterials derived from sources free
of ecological burden. Plant-derived biomaterials show great
promise in harnessing both the natural strength of plant
microarchitecture combined with their natural biological roles
as supporters of cell growth (Gershlak et al., 2017). Enhanced
bioactivity, biocompatibility, biodegradability, and mechanical
stability are perceived advantages of plant derived materials
(Yegappan et al., 2018), moreover as potential bioinks owing
to their affinity for chemical modulation and facile hydrogel
formation. As such, this new generation of abundant, natural,
and renewable bioinks have attracted significant attention in the
realm of 3D bioprinting research.

The aim of this review article is to outline the most
widely used biomaterials derived from land plants and marine
algae (Figure 1), with an emphasis on nanocellulose and
alginate, as two of the most researched materials in these
respective categories. The properties that render these materials
as promising bioinks for three dimensional bioprinting will
thereafter be discussed.

3D Bioprinting Technologies
Biological printing “Bioprinting” enables the precise deposition
of cells in a viscous biomaterial in a specific spatial arrangement
using a computer-aided printer. The evolution of this technology
from mainstream 3D printing has demanded increasingly
complex printing methods to enable the biological roles of the
ink, such as cell adhesion, and proliferation to be served in
addition to the mechanical properties required of conventional
3D printing ink. Due to their embedded cellular material, bioinks
are printed at much lower temperatures and demand mild, non-
cytotoxic crosslinking methods to preserve cellular viability, and
function (Malda et al., 2013).

3D bioprinting uses three major types of printing technology:
inkjet, laser-assisted and extrusion (Table 1). Inkjet bioprinting
uses low viscosity solutions, such as cell suspensions that
are deposited at high shear rates as droplets of ∼50µm
(micrometer) diameter (Hölzl et al., 2016). In contrast, laser

assisted bioprinting focuses a laser toward a laser-absorbing
biomaterial layer which in turn produces a local pressure to
enable ink deposition (Derakhshanfar et al., 2018). Extrusion
based bioprinting, or bioplotting, is the most common subtype,
comprising the deposition of cells, and bioink using a nozzle
driven by pneumatic, piston or screw forces (Landers et al., 2002;
Jakab et al., 2008). Although slower than laser and inkjet printing
approaches, extrusion bioprinting enables structural deposition,
and solidification as each layer is deposited and is associated
with good cell viability (Smith et al., 2004; Derakhshanfar et al.,
2018). Each type of printing technology requires bioinks of
differing viscosities for successful deposition: droplet and inkjet
printers require viscosities of 1–300 mPa·s whereas extrusion-
based printers require aminimum of 30–6× 107 mPa·s (Aljohani
et al., 2018). As such, bioinks with tunable viscosity are most
likely to offer the versatility required to undergo printing using
different technologies.

Bioprinting technology is becoming an increasingly available
and affordable technology to support tissue engineering research,
with many research groups now opting to customize their own
in-house devices owing to the widespread availability of open
source software and firmware (Reid et al., 2016). A major
limitation of bioprinting for biological constructs is the choice
of a suitable bioink: one not only biologically conducive of cell
growth but in possession of the necessary rheological properties
such as viscosity, shear thinning, and crosslinking to optimize
post-printing fidelity (Jessop et al., 2017; Kyle et al., 2017).

In addition to biological and rheological properties, in
order to be valid in vivo tissue replacements, bioinks must
have adequate mechanical strength to support de novo tissue
formation. Common mechanical assessments for bioinks include
compressive, storage and elastic moduli, residual, and maximum
compressive stresses (Chung et al., 2013). These parameters
are of importance when considering the native properties of
the target tissue type. Supportive structural tissues such as
bone and cartilage, will have significantly greater biomechanical
demands to withstand the myriad of load bearing and shear
forces exerted in vivo. Articular cartilage for example, has a
compressive modulus of ∼2 MPa (Beck et al., 2016), whereas
human bone has been shown to possess a tensile strength of 34–
45 MPa, a compressive strength of 120–160 MPa, and a Young’s
modulus of 230–540 MPa (Havaldar et al., 2014). The pursuit
of a material capable of emulating these structural properties,
alongside possessing the rheological demands of a bioink adds
to the challenge of material selection. As such, the search for
novel materials has naturally progressed to the biologically
and mechanically diverse array of plant-derived substances as
candidate bioinks.

PLANT-DERIVED BIOMATERIALS

Alginate
Alginate is one of the most commonly used materials in
3D bioprinting. Alginate is renewably sourced from brown
algae, commonly Laminaria hyperborean, Laminaria digitate,
Laminaria japonica, Ascophyllum nodosum, and Macrocystis
pyrifera (Lee and Mooney, 2012). Structurally, it consists of
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FIGURE 1 | Plant-derived biomaterials from land and marine sources and their potential in 3D bioprinting.

co-polymers composed of the polysaccharides β-D-Mannuronic
acid (M) and α-L-Gluloronic acid (G) (Axpe and Oyen, 2016).
Alginates contain blocks of G residues, blocks of M residues,
and alternating M and G residues (Stößlein et al., 2019). The
M and MG residues of the co-polymer have been shown to
increase flexibility, whereas the G residues increase rigidity and
the capacity for gelation (Axpe and Oyen, 2016). The natural
ratio of M:G varies depending on the seaweed species fromwhich
the alginate is extracted (Cardoso et al., 2016) and also exhibits
environmental and seasonal variability (Maleki et al., 2016). The
various combinations therefore result in anionic compounds
with a wide variety of biomedical applications.

Commercially available alginate is acquired via acidification
to extract the alginate as alginic acid. Thereafter the material is
alkalinized and precipitated with sodium or calcium carbonate
to generate an alginate salt. Vacuum filtration can then be used
on the precipitated alginate to collect it (Fawzy et al., 2017;
Patil et al., 2018). An alternative means of alginate production
is through bacterial biosynthesis (Hay et al., 2013). This process
is mediated largely by the species of the genera Pseudomonas and
Azotobacter (Hay et al., 2013; Moradali et al., 2017; Urtuvia et al.,
2017) and is a costly biofabrication process with a theoretical risk
of pathogenicity.

Alginate bioinks can be crosslinked readily after extrusion
through simple immersion in calcium chloride solution (Wee
and Gombotz, 1998). The crosslinking process itself enables
structural fixation in a matter of minutes. Despite the speed
of crosslinking, the mechanical properties of the crosslinked
derivative render it susceptible to diffusion after extrusion,
which results in structural deformation. Alternative approaches

to rectify this issue include the use of barium chloride (Bajpai
and Sharma, 2004) and a calcium chloride nebulizer, which
demonstrates a more gradual crosslinking process with less
potential for subsequent diffusion (Raddatz et al., 2018).

The rheological properties of alginate-based bioinks must
be considered in the context of 3D bioprinting (Ching et al.,
2017). The viscosity of an alginate bioink is a product of
alginate concentration and molecular weight; as well as the
cellular density and phenotype of the laden cells (Axpe and
Oyen, 2016). When using a cell laden hydrogel, the density
of the biomaterial ideally should be the same as the cells,
thus optimizing a homogenous cell suspension; increasing
the concentration of alginate, and decreasing the degree of
oxidization can increase density to the required level (Jia et al.,
2014). Factors affecting viscosity include temperature, where
viscosity is inversely proportional to an increase in temperature,
and the concept of shear-thinning, where viscosity decreases
as shear rate increases (Axpe and Oyen, 2016). In terms of
degradation, the ideal solution is that hydrogels should degrade
at a rate that mirrors the rate at which the cells produce their own
extracellular matrix (Jia et al., 2014).

When considering a biomaterial for 3D bioprinting, it
is important to take into account viscoelastic properties.
Alginate hydrogels have a propensity to increase the loss
modulus and thereafter decrease the storage modulus of a
bioink; whilst maintaining a consistent loss tangent through
varying concentrations (Gao et al., 2018). However, when
using a crosslinked alginate hydrogel, a higher storage modulus
compared to loss modulus can be observed (Aguado et al.,
2012). When utilizing an extrusion-based method of bioprinting,
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the extrusion pressure requirement increases as the viscosity
increases, with the loss modulus having more of an impact that
the storagemodulus (Zhang et al., 2017). Unfortunately, there is a
negative correlation between extrusion pressure and cell viability,
and also loss tangent and structural integrity whichmust be taken
into account when designing bespoke printing parameters using
alginate hydrogels (Gao et al., 2018).

Printing parameters of alginate are set to optimize the
rheological, mechanical, and physical properties of alginate. As
discussed, the viscosity of alginate is an important component
to control when 3D bioprinting, it has been shown that a
viscosity of 300–30,000 millipascal second (mPa·S) is optimal
for printing, an alginate concentration of 2–4% provides this
viscosity (He et al., 2016). Alginate can be printed effectively
at a range of temperatures in order to achieve the required
viscosity (He et al., 2016; Zhu et al., 2018). However, alginate-
based hydrogels have been shown to be most effective at 37◦C
due to: accurate extrusion flow rate, decreased occurrence of
obstruction and compatibility with cell viability (Ding et al.,
2018). One study showed that for a 7% alginate/8% gelatin
hydrogel, optimum printing parameters at 37◦C are as follows:
nozzle gauge = 30G, printing pressure = 100 kPa, and
printing speed = 4 mm/s (Webb and Doyle, 2017). Storage
of alginate can be vast depending upon purpose; for example,
cells encapsulated with alginate can be stored comfortably
between 0 and 30◦C and are fit for purpose, whereas it
has been shown that in an alginate/gelatin hydrogel, storage
at 3◦C prolonged degradation when compared to storage at
37◦C (Giuseppe et al., 2018).

As discussed previously, the physicochemical properties
of alginate can depend upon the G:M; where higher
concentrations of G are more stable when compared to
high M content (Axpe and Oyen, 2016). The molecular weight
of the crosslinking agent and exposure time can be altered
in order to regulate the elasticity (Young’s) modulus of a
hydrogel; for instance, using increasing concentrations of
poly(ethyleneglycol)diamine as a crosslinker has been shown to
increase the viscosity and toughness of the hydrogel (Naghieh
et al., 2018; Meng et al., 2019). Another study showed an
increase in elasticity modulus with increasing concentrations
of Ca2+ which enabled an alginate-based hydrogel to
improve mechanical properties whilst maintaining high ionic
strength (Matyash et al., 2014).

Tensile strength, Young’s modulus and elongation at the
break are components of the mechanical properties of alginate.
It has been shown that uncrosslinked alginate has a tensile
strength of 25.8 ± 7.3 megapascal (MPa), a Young’s modulus
of 12.9 ± 2.6 MPa, and an elongation at the break of
2.50 ± 0.8%. This study showed an increase in tensile
strength, Young’s modulus and elongation at the break when
alginate hydrogels were crosslinked (with d-mannitol and
xylitol) (Park et al., 2018).

Nanocellulose
Nanocellulose, a versatile and abundant natural biopolymer, has
shown great promise due to its robust mechanical properties,
unique surface chemistry, desirable biological characteristics

(high biocompatibility, low biodegradability, and non-toxicity),
and cost efficiency.

Generally, its architecture follows a hierarchical order
progressing from an intricate arrangement of polymeric
cellulose chains [∼1 nanometer (nm)] and culminating in
macroscopic fibrillar structures of ∼5–20µm (µm) in diameter.
A structural hierarchy also exists within the microfibrillar motif
itself, consisting of highly organized crystalline regions with
alternating amorphous domains (Gumrah Dumanli, 2017). This
configuration ultimately dictates the mechanical behavior of
cellulose, with the disordered (amorphous) regions conferring
flexibility and plasticity, and the ordered (crystalline) fraction
contributing to the strength and elasticity of the bulk material
(Lin and Dufresne, 2014).

Broadly, nanocellulose can be categorized into three types:
(1) Cellulose nanocrystals (CNC), (2) Nanofibrillated cellulose
(NFC), and (3) Bacterial cellulose (BC). The plant-derived
constituents (CNC & NFC) have recently generated considerable
research activity and are largely favored for their sustainability;
more-so considering the virtually inexhaustible feedstock from
which they are isolated. Popular sources for CNC and NFC
extraction include wood, hemp, cotton, potato tuber, and algae
(Lin and Dufresne, 2014).

The production of nanocellulose largely involves the chemical
and/or mechanical breakdown of lignocellulosic biomass in a
“top-down” fashion. Cellulose nanocrystals are most commonly
derived through acid hydrolysis; a method which removes the
amorphous regions whilst preserving crystalline morphology
(crystallinity ∼54–88%) (Phanthong et al., 2018) This process
also contributes to the hydrophilicity of CNCs and results in
a compound with deformation qualities theoretically similar to
those of Steel and Kevlar [Young’s modulus∼167.5 (gigapascals)
GPa] (Tashiro and Kobayashi, 1991). The molecular dimensions
can range from 3 to 50 nm in diameter and 50 nm−3µm
in length, dependent on the percentage crystallinity of the
primary source (Dumanli et al., 2014). In contrast, high-pressure
homogenization (before or after enzymatic treatment) is often
the method of choice for the extraction of nanofibrillated
cellulose. In NFC, both the amorphous and crystalline sequences
of the elementary cellulose structure are conserved, resulting
in a product of longer length, high surface area, and extensive
hydroxyl groups for surface modification (Lavoine et al.,
2012). Although cellulose is widely regarded as a low-cost
biomaterial, the intensive processing and modification steps
involved in nanocellulose production further contribute to the
overall price. With this considered, cost efficient processes
for the bulk production of nanocellulose present an area
warranting further scientific attention (Klemm et al., 2011).
Conversely, the biosynthesis of bacterial cellulose is somewhat
distinct to that of plant-based biomaterials in that low
molecular weight sugars are naturally assembled in a “bottom-
up” process. Furthermore, this mechanism excludes various
constituents otherwise found in lignocellulose (i.e., lignin, pectin,
and hemicellulose). For this reason, bacterial cellulose has
garnered attention as a highly pure and biocompatible resource.
Regardless, due to their pre-existing infrastructure for harvesting,
pulping, and cost efficient processing, plants undoubtedly offer
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an optimal source for sustainable nanocellulose derivation
(Hao et al., 2015).

From a morphological viewpoint, nanocellulose boasts an
array of desirable properties for 3D bioprinting, and tissue
engineering. NFC based hydrogels consistently display non-
Newtonian, shear thinning (viscoelastic) behavior, generally
portrayed by their large storage modulus over the loss modulus
at minimal shear rates (Markstedt et al., 2015). More elaborately,
the storage (G’) and loss (G”) moduli of nanocellulose may be
considered accurate indicators of elastic and viscous response,
respectively. In a recent study, the storage modulus for NFC,
CNC, and Nanocellulose “blends” (NFC and CNC in mixture)
was shown to be greater than the loss modulus across all
frequencies studied, thus inferring a dominance in elasticity for
these biomaterials and demonstrating the presence of robust
interconnectivity between nanostructures (Kyle et al., 2018).
Furthermore, the examined systems also demonstrated a loss
tangent (tan δ) of <1 indicating an inherent propensity for a
lower dissipation potential (i.e., greater elastic response) amongst
the biomaterials studied.

The flow properties for these samples were also investigated
by measuring the loss modulus as a function of shear rate. The
retention of viscosity at zero shear and preservation of shape
fidelity was especially marked within the nanocellulose blends;
possibly due to widespread entanglement between the micro-
and nanostructures within the composite hydrogel (Kyle et al.,
2018). As detailed by (Chirayil et al., 2014) the concept of shear
thinning may be attributed to the orientation of nanocellulose
microstructures in the direction of shear flow. At low shear rates,
the NC nanoarchitecture exhibits a coiled configuration which
progressively disentangles at increasing rates to align its axis with
the direction of flow. An amalgamation of these characteristics
thus allows for the seamless extrusion of bioink as a liquid
phase precursor, with preservation of post-printing shape fidelity
within the hydrogel construct. Moreover, the introduction of
aldehyde and carboxyl functional groups promotes the formation
of readily cross-linkable substrates, thereby overcoming current
challenges in the stabilization of pure nanocellulose hydrogels
(Markstedt et al., 2015). CaCl2 mediated crosslinking has,
however, been shown to disrupt the “macro-pore” appearance
of the printed construct. Additionally, the introduction of
dialdehyde functional groups through periodate oxidation may
also induce pro-inflammatory TNFα gene expression (Kollar
et al., 2011). Despite this, further exploration of such novel
approaches may yet yield innovative solutions for the relatively
poor cross-linking ability of pure nanocellulose. Alternative
strategies for hydrogel cross-linking have therefore been revised,
with the most noteworthy involving the incorporation of
divalent/trivalent cations (i.e., Ca2+, Cu2+, Al3+) (Dong et al.,
2012) and covalent cross-linkers (Syverud et al., 2011).

Thermogravimetric analysis of NFC, CNC and bled has,
additionally, been used to characterize stability through the
measurement of rate and onset of thermal degradation (Kyle
et al., 2018). For tissue engineering purposes, all three
nanocellulose formulations may be utilized at physiological
temperature (37◦C) and remain stable above the recommended
temperature for autoclaving (121◦C). A small degree of moisture

loss has, however, noted between 50 and 140◦C and subsequently
warrants investigation into the effects of heat sterilization on NC
nano- and microarchitecture.

Agarose
Agarose is derived from red seaweed and has garnered interest
in the plant derived 3D bioprinting sphere due to its ability
to be prepared as a thermal-reversible gel (Zarrintaj et al.,
2018). It exhibits many of the properties of alginate, emulating
the extracellular matrix with high water uptake, but with the
advantage of hydrogen bond-mediated self-gelation without the
need for potentially toxic crosslinking agents such as genipin
(Campos et al., 2018). It has however been noted to be adversely
mechanically affected by the presence of cells: cells within agarose
diminish the gel strength due to interference with the hydrogen
bonding required for crosslinking and gelation (Shoichet et al.,
1996). This limitation can be somewhat surmounted through
combination with other polymers and proteins such as collagen,
chitosan, and cellulose to increase cell affinity (Annamalai et al.,
2016; Awadhiya et al., 2017). Research into the role of agarose
composites has been explored for tissue engineering purposes for
neural, vascular, bone, and pancreatic tissue (Bhatnagar et al.,
2016; Zarrintaj et al., 2018). However, further refinement will be
required to produce bioinks possessing the necessary properties
for bioprinting purposes.

Young’s modulus of agarose is heavily dependent upon gel
concentration; one study showed a variance between ∼5.6 kPa
(0.4% agarose) and ∼17.4 kPa (1.2% agarose), whereas another
showed values ranging from 130 kPa (1% agarose) to 3,000 kPa
(10% agarose) (Ahearne et al., 2005; Walker et al., 2011). Both
the storage modulus and loss modulus of agarose are positively
correlated with concentration of agarose; and agarose is noted
to be significantly elastic (Chen et al., 2003). Compared to
hydrogels such as gelatin, collagen, and alginate, agarose displays
high viscosity. Even at the highest shear rates, one study noted
viscosity of a 4% solution to be 257 mPas·s, which may restrict its
use for inkjet printers with high kinetic energies. Furthermore,
in order to maintain agarose hydrogels in liquid state, their
temperaturemust bemaintained above 37◦C: a biologically viable
temperature, but one that carries additional considerations for
storage and printing (Benning et al., 2018). It has been shown
that storage and loss modulus increase with frequency, as well as
the loss tangent (Walker et al., 2011). Agarose has been shown
to have high mechanical strength with tensile strengths of 31.03
± 0.74 MPa reported, along with an elongation at break value of
45.2± 2.7% (Rhim, 2012).

Carrageenan
Carrageenan is a relatively under researched polygalacton derived
from the Rhodophyceae members of red algae seaweeds. The
material is composed of alternating long chains of α-1, 3 D-
galactose, and β-1, 4 3, 6-anhydro-galactose with ester sulfates
which emulate the structure of mammalian glycosaminoglycans
(Yegappan et al., 2018). Carrageenan can undergo both thermal
and ionic gelation, and combined with other materials such
as poly(oxyalkylene amine) (Bakarich et al., 2014), methacrylic
anhydride (Chimene et al., 2018) and nanosilicates (Wilson et al.,
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2017; Chimene et al., 2018) to produce a printable bioink capable
of extrusion and shape retention, with high fidelity, elasticity
and stiffness (Wilson et al., 2017) to enable cross-linkable multi-
layered tissue constructs. Young’s modulus of carrageenan, like
agarose is dependent upon the concentration of carrageenan,
with values ranging from 0.10 MPa (1% carrageenan) to 0.66
MPa (3% carrageenan) and becoming increasingly unpredictable
as water content increases (In et al., 2014). The tensile strength
of carrageenan has been reported as 39.34 ± 0.51 MPa, as
well as elongation at break value of 19.5 ± 0.4% (Rhim, 2012).
Carrageenan-based bioinks have demonstrated good cell viability
and attachment (Chimene et al., 2018), plus an affinity for
osteogenesis (Li J. et al., 2015), augmenting the compressive
strength of collagen-hydroxyapatite based composite gels for
bone tissue engineering (Feng et al., 2017). The presence
of the sulfated backbone in carrageenan mimics naturally
occurring sulfated glycosaminoglycans in cartilage extracellular
matrix (Bhattacharyya et al., 2010; Popa et al., 2015) and
has demonstrated chondrogenicity, non-toxicity and mechanical
properties similar to that of native cartilage (Popa et al., 2015).
The facile crosslinking and glycosaminoglycan mimicry make
carrageenan an especially exciting prospect for cartilage bioinks
for tissue engineering.

Pectin
Pectin is a natural constituent of plant cell walls, possessing
high molecular weight, and hydrophilicity, making it an
ideal candidate for hydrogel formation and subsequently 3D
bioprinting. As with other model bioinks, pectin is a highly
versatile hydrogel with rheological and viscoelastic properties
amenable to modulation, independently of the cell adhesive
ligand density (Pereira et al., 2018a). The elastic modulus
(G’) of pectin may be finely tuned through adjustments in
polymer and/or crosslinker concentration, thus allowing for the
biomechanical mimicry of a broad range of native human tissue
types. Ionic crosslinking with CaCl2 also results in a substantial
increase in yield stress (τy) and therefore significantly augments
the extrudability of the hydrogel and shape fidelity of the printed
construct (Cui et al., 2017).

Industrially, pectin is derived from waste materials from
juices, apples, and cider industries through acidic and thermal
extraction (Jayani et al., 2005). Gelation is possible through
densely concentrated pectin solutions, thereby increasing
polymeric entanglements, but also through exposure to acidic
conditions and divalent or trivalent cations (Munarin et al.,
2012). Similarly to alginate, pectin is readily crosslinked in the
presence of divalent calcium ions, which interact through the
carboxyl groups to induce bridges between homogalacturonic
chains (Fang et al., 2008). Pectin, compared to other natural
polymers is largely unexplored in its tissue engineering and
regenerative capacity (Munarin et al., 2012). A major limitation,
as with alginate amongst other polysaccharides, is its limited
capacity for cell adhesion. Nonetheless, the role of pectin as
a scaffold for bone tissue engineering has been explored with
promising potential (Coimbra et al., 2011; Munarin et al., 2011),
with cell adhesion augmented through chemical modification

(Kokkonen et al., 2006) and combination with other materials
such as polyvinylalcohol (Yao et al., 2009).

Starch
Starch is a highly abundant storage polysaccharide derived from
cereals and tuber plants such as potatoes (Lu et al., 2009).
Starch molecules are typically composed of ∼30% amylose
and 70% amylopectin, though natural variation from this ratio
occurs depending on the source of extraction (Cherian Vengal
and Srikumar, 2005). Starches with higher amylose content
confer greater crystallinity and subsequent firmness (Ige et al.,
2012). Its hygroscopic nature enables reversible hydration and
therefore promotes seamless hydrogel ejection for extrusion-
based printing methods.

The viscoelastic properties of starch are principally reliant
on several mechanical variables, namely concentration, extrusion
temperature, storage modulus (G’), yield stress (τy), and flow
stress (τ f). As a proxy for construct stability, G’ and τy refer
to the hydrogels potential to withstand its own weight when
printed in successive layers whilst concentration, temperature,
and τ f are markers of extrudability. Intuitively, a moderate to
high G’ and τy in combination with a low τ f constitute the
ideal parameters for a highly desirable starch hydrogel for heat
extrusion 3D bioprinting (Chen et al., 2019). In their rheological
characterization study, Chen et al. (2019) demonstrated that
Rice Starch of concentration 15–25% (w/w) extruded at 80◦C,
Potato Starch [15–20% (w/w)] at 70◦C and Corn Starch [20–
25% (w/w)] at 75◦C expressed ideal τy [32–455 Pascals (Pa)],
τ f (140–722 Pa), and G’ (1150–6909 Pa) values for heat extrusion
3D Bioprinting, thereby conferring excellent printability, shape
fidelity and resolution. In a separate study, the use of starch
hydrogels with a predominantly elastic response (i.e., tan δ of
∼0.1 and 0.2), yield stress between 60 and 730 Pa and dynamic
modulus (G∗) between 300 and 1,200 Pa at 1 Hertz (Hz) has been
extensively advocated (Huang, 2018). It is, however, important to
appreciate that although primarily related to the 3D bioprinting
of edible products, these printing specifications remain to be
translated into application for 3D tissue engineering.

Furthermore, starch molecules may be compounded with
other biopolymers to augment properties for bioprinting
applications (Ige et al., 2012). Starch is considered highly
biocompatible, and as such starch and its compounds have been
considered as potential scaffolds for tissue engineering and drug
delivery. Indeed cell encapsulation within starch-based hydrogels
have been investigated to demonstrate high cell viability and
adhesion with rheological properties analogous to a myriad of
human tissue types (Dong et al., 2016). More specifically, the
rheological versatility of starch allows for the flexible regulation of
hydrogel composition to closely emulate the storage modulus of
native tissue, thereby satisfying various mechanical requirements
as an ideal 3D culture platform for different cell types.
Additionally, the effect of hydrogel compositional variations on
swelling kinetics and equilibrium swelling ratios has also been
examined. In particular, the hydrophilic nature of sulfobetaine-
derived starch encourages water retention within the hydrogel;
a characteristic which potentiates nutrient, signal factor and
metabolic waste transportation and ultimately promotes the
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differentiation of encapsulated cells (Dong et al., 2016). As such,
research into the role of starch-based polymers for 3D bioprinting
has been commenced, in particular for bone tissue engineering
(Gomes et al., 2002; Salgado et al., 2004; Martins et al., 2009).
However, further research needs to be undertaken to ascertain its
validity as a viable bioink for multi-tissue bioprinting purposes.

Fucoidan
Fucoidan is an anionic sulfated, water-soluble polysaccharide
derived from marine brown algae. The material has garnered
interest owing to its potential antioxidant, anti-inflammatory
(Fitton, 2011), and angiogenic (Purnama et al., 2015; Marinval
et al., 2016) properties for tissue engineering purposes. The
rheological properties of fucoidan also appear conducive of
bioprinting with shear thinning behavior observed below 1.5%
weight-volume yet plastic behavior at 2% with a yield value
of 2Pa. Dynamic viscoelasticity was also observed: increased
by increasing the concentration in solution and through
the addition of NaCl and CaCl2, and decreased at higher
temperatures (Tako, 2003). Both linear and branched subtypes
of fucoidan have been characterized with distinct rheological
properties. Indeed the variability in viscosity appears to vary
with the species of seaweed from which the fucoidan is derived,
reflecting differences in molecular weight, proportion of sulfates,
and uronic acids.

As with many of the polysaccharides, combination of this
material with chitosan, gelatin, alginate, and hydroxyapaitite
has been performed to produce constructs for wound dressings
and bone tissue engineering scaffolds (Venkatesan et al., 2014;
Lowe et al., 2016). Fucoidan has also been combined with
chemotherapeutic agents displaying promise as a drug delivery
material in vitro and is believed to possess indirect antimicrobial
activity (Lee et al., 2013) which confer excellent biological
potential for the development of future bioinks.

Biomedical Applications
The abundancy, gelation capacity, and bioactivity of plant
derived biomaterials hold exciting potential as bioinks for 3D
bioprinting. In particular, extensive research has been undertaken
on the potential role of alginate and nanocellulose as tissue
engineering scaffolds, wound healing adjuncts, drug delivery
systems, and implantable medical devices. As such, current
research on these two biomaterials at the forefront of bioprinting
technology will be explored throughout the subsequent section of
this review.

Biocompatibility
Biocompatibility describes a harmonious and non-deleterious
relationship between implanted foreign material and host tissue.
Hydrogels are designed to mimic the composition of natural
extracellular matrix with high cellular biocompatibility (Aljohani
et al., 2018), whilst demonstrating the viscoelastic properties to
promote fluid dispersion through extrusion-based bioprinting
methods. These features are readily exploited in the field of
biomedicine; where alginate, nanocellulose, and other plant
derived biomaterials are typically employed as model hydrogels
(Cardoso et al., 2016) for tissue engineering, pharmaceutical

drug delivery, and wound healing (Santana et al., 2013;
Patil et al., 2018).

With respect to cellulose and its derivatives, biocompatibility
is thought to be heavily reliant on surface chemistry, most
notably: topography, wettability, charge and presence of
hydrophobic, and hydrophilic domains (Pertile et al., 2010).
Intuitively, modification of these parameters has been shown
to augment cellular adhesion and bioactivity. In particular,
modulation of CNC surface charge is known to increase cellular
affinity for the biomaterial through an increase in cell adhesion
proteins and subsequent cellular proliferation (Aggarwal
et al., 2013). Moreover, nanocellulose also demonstrates
good hemocompatability in vitro (Wang et al., 2013) and
when implanted into mice models in vivo (Shimotoyodome
et al., 2011). The functionalization of polyurethane with CNF has
recently shed light on the potential use of nanocellulose as a novel
candidate for vascular prosthesis due to its low thrombogenicity
and exceptional biochemical versatility (Lin and Dufresne,
2014). Alginate is perceived to be highly biocompatible, non-
thrombogenic polymer in its natural state, and thus has been
utilized in a plethora of medical treatments (Liberski). However,
alginate is amenable to structural modification to render it both
thrombogenic and anti-thrombogenic. In its sulfonated form,
alginate has been shown to have an anti-thrombogenic effect;
alginate sulfate has been shown to be comparable to heparin
(also a sulfated polysaccharide) when measuring the activated
partial thrombin time (APTT), but shows no significant effect
on the prothrombin time (PT), leading to the conclusion that
it has an inhibitory effect on the intrinsic coagulation pathway
(Ahearne et al., 2005). Whereas, calcium sodium alginate fibers
are utilized widely in clinical practice as hemostatic wound
dressings (Thomas, 2000). The modifiable properties of alginate
undoubtedly augment its applications for clinical use and further
examples of clinical trials using alginate include the treatment
of pressure sores, post-operative intrauterine adhesions, reflux
suppression, weight loss, skin grafts, burns, and surgical wounds
(Nowacki et al., 2017).

Overall, nanocellulose, like most plant derived biomaterials,
is widely regarded as a biocompatible resource, with negligible
immunogenic responses observed in vivo (Miyamoto et al., 1989).
The lack of cross reactivity may somewhat be attributed to
its inherent resistance to degradation within the human body,
largely pertaining to the absence of cellulase enzymes in humans.
It, however, still stands that the long-term effects of a non-
degradable material may confer a risk of delayed immunogenicity
(Lin and Dufresne, 2014).

Closely allied to biocompatibility is the concept of toxicity,
with both terms often used synonymously. The cytotoxicity
of CNC against nine individual cell lines was determined
and exhibited no cytotoxic phenomena in the concentration
range and exposure time studied (0–50µg/ml and 48 h) (Dong
et al., 2012). Furthermore, no cytotoxic or inflammatory events
were recorded in the assessment of NFC on mouse and
human immune cell lines in vitro (Vartiainen et al., 2011). In
contrast, various studies have conversely described an increase in
cytotoxicity and gene expression modification, more-so at higher
CNC concentrations (> ∼100µg/ml). In particular (Pereira
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et al., 2013), demonstrated a dose-dependent reduction in
fibroblast cell viability, with a positive relationship between CNC
concentration and the expression of stress related biomarkers
(HSP70.1, PRDX1& BAX). Such dose dependent toxicity has also
been illustrated in vivo following inhalation of CNC (Lin and
Dufresne, 2014).

Notwithstanding the vast evidence in support of plant derived
biomaterials as an inherently safe biomaterial, further research
may be required to comprehensively characterize their toxicology
for biomedical application. More specifically, the potential
risks associated with modification and crosslinking should be
thoroughly explored.

Tissue Engineering
Current challenges within the field of tissue engineering focus
on the production of biocompatible scaffolds which accurately
mimic the native in vivo environment. As previously highlighted,
the topography and architecture of natural scaffolds (i.e., surface
topology and porosity, fiber density, and network structure)
fundamentally dictates the cell-biomaterial interactions and,
therewith, cellular behavior (Jorfi and Foster, 2015).With specific
reference to 3D bioprinting, a balance between these biological
qualities and the requirements for good printability is often
difficult to attain.

According to a recent report by Global Market Insights,
Inc (Nanocellulose Market Size–Industry Share Analysis Report
2017-20241) the nanocellulose market is projected to exceed USD
1 billion by 2024. In light of such great economic potential, the
amount of research activity surrounding the use of lignocellulosic
biomaterials continues to grow exponentially (Jorfi and Foster,
2015). For this reason, the applicability of nanocellulose at both
microscopic (cell culture) and macroscopic (tissue engineering,
repair, implants, drug delivery etc) levels is of significant value to
the field of biomedicine.

Alginate has appeal as a candidate biomaterial owing to its
low-cost, highly biocompatible, biodegradable, and non-toxic
nature plus its ability to be processed into a hydrogel (Ching
et al., 2017). Of the plant derived biomaterials, alginate is used
most extensively for 3D bioprinting applications. Biocompatible
scaffolds using alginate hydrogels have been shown to have
great efficacy for tissue engineering and cell culture (Dai et al.,
2016), plus the high biodegradability and renewability of alginate
is a major advantage over plastic-based compounds in 3D
bioprinting (Ching et al., 2017).

The versatility of plant derived biomaterials such as alginate
and nanocellulose as isolated and composite scaffold have
been demonstrated in the 3D bioprinting of blood vessels,
bone, cartilage, and skeletal muscle (Table 2). However, the
validity of plant derived biomaterials are not without limitation.
Biofabrication of nanocellulose is hindered by poor cross-linking
potential and shape fidelity post-printing, whereas alginate alone
has only a moderate affinity for cell-adhesion or proliferation
(Lee and Mooney, 2012). As such, nanocellulose and alginate

1Nanocellulose Market Size—Industry Share Analysis Report 2017-2024. Available
online at: https://www.gminsights.com/industry-analysis/nanocellulose-market
(accessed December 30, 2018).

hydrogels are often combined with materials that augment the
desired characteristics for enhanced 3D bioprinting.

Using extrusion-based bioprinting with an alginate scaffold,
vascularized bone tissue has been synthesized with high tissue
viability (Dhawan et al., 2018). Whole bone organ engineering
has been studied using an alginate based bioink with Arg-
Gly-Asp adhesion peptides reinforced with polycaprolactone
fibers. This combination of materials made it possible to
engineer an entire vertebral body. This in vivo supported
vascularized endochondral bone with supporting marrow
structure, potentially leading to future prospects of bioprinting
vertebrae for patients with vertebral osteoporosis/fractures (Daly
et al., 2016). Likewise, NFC composite scaffolds for 3D bio-
printing of bone tissue have also been successfully constructed
from a variety supporting biomaterials, most notably chitin
(Torres-Rendon et al., 2015), gelatin (Gorgieva et al., 2017), and
hydroxyapatite (Ao et al., 2017).

Cartilage tissue has been successfully bioprinted using an
alginate-nanocellulose bioink, in which the study concluded
the combination alginate and nanocellulose was conducive
to bioprinting live human cartilage (Markstedt et al., 2015).
The study successfully combined the rheological properties
of NFC (i.e., high printing resolution and shape fidelity)
with the increased storage modulus of alginate for cartilage
tissue engineering applications. The sheer thinning behavior
of the composite hydrogel (NFC-A) enabled printing of
anatomically shaped cartilage constructs (e.g., human ear
and sheep meniscus), with high human chondrocyte viability
(86%) after 7-day culture. It was later determined that the
same NFC-A scaffold promotes human nasal chondrocyte
redifferentiation, conservation of phenotype and production of
cartilage specific ECM components, thus resembling in vivo
chondrogenesis (Martínez Ávila et al., 2016), plus when using
human nasal chondrocytes, cell proliferation was high and
there was enhanced deposition of human collagen II (Möller
et al., 2017). For the purposes of cartilage tissue engineering
it has also been demonstrated that combining alginate with
nanocellulose addresses the issue of cell adhesion, thereby
increasing cartilage ECM deposition (Aljohani et al., 2018).
Combining alginate with collagen has also surmounted the issue
of cell adhesion, demonstrating increased cell viability, tensile
strength, cellular proliferation, and an increased capacity for cell
adhesion (Yang et al., 2018).

Advances in soft tissue engineering have similarly resulted in
NFC and alginate based conductive bio-inks for the generation
of neural, dermal and vascular tissue scaffolds, among others. It
was discovered that human-derived neuroblastoma cell adhesion,
differentiation and proliferation was potentiated by a NFC-
carbon nanotube composite with minimal effect on cell viability
(Kuzmenko et al., 2018). Furthermore, as validated by Li et al.
(2015b) bFGF impregnated CNC-collagen scaffolds were able
to demonstrate angiogenic and skin generation capabilities
at in vitro and in vivo alike, thus alluding to their infinite
potential within the field of regenerative medicine. Fabrication of
tissue engineered aortic valve conduits using an alginate/gelatin
polymer bioink has been successfully achieved using 3D
bioprinting techniques. It was found that by direct encapsulation
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of smooth-muscle cells and aortic valve leaflet interstitial cells,
the tensile strength of the biopolymer held after a 7 day culture
(Duan et al., 2013). Alginate based scaffolds have also been tested
in vitro as a potential candidate for muscle tissue engineering
(Ansari et al., 2016).

A significant challenge in tissue engineering is vascularization.
Adequate blood supply to new tissues is a prerequisite for
the survival in vivo, and until addressed will limit the scale
of viable tissue that can be produced. Using advancements in
three dimensional printing technology, it is now possible to
synthesize intricate hollow, branched blood vessels and artificial
blood vessels have now been created and optimized using 3D
printing technology. An initial technique involved using an
alginate bioink laced with carbon nanotubes to 3D bioprint
mechanically stable vascular conduits. This study concluded
that further research should focus on replacing the nanotubes
with natural protein nanofibers to allow for large scale tissue
production (Dolati et al., 2014). Alginate has been used to
encapsulate human umbilical vein smooth muscle cells and
thereafter bioprint vasculature conduits in vitro. These conduits
showed good proliferative activity and deposition of both smooth
muscle matrix and collagen on the peripheral and luminal
surface when examined histologically (Zhang et al., 2015). This
technique has been further extrapolated to bioprint a perfusable
human coronary artery tree using alginate as the primary scaffold
material (Hinton et al., 2015). Interestingly, injectable alginate
has been shown to promote neovascularization, restore partial
blood flow, and tissue function of the heart muscle in-vivo,
when injected directly into the ischemic site of patients with
myocardial infarction or peripheral arterial disease (Ungerleider
and Christman, 2014), alluding to a potential angiogenic role
of this natural biomaterial. Bioprinting of alginate microfibers
have additionally been combined with theta-glass capillaries to
facilitate the formation of vascular architecture with exciting
implications for the future of vascularized tissue engineering
(Nishimura et al., 2018).

The applicability of NFC as a stand-alone resource has also
been fruitfully explored within the realms of cell culture and
organoid development, with implications for organ replacement,
and drug testing modalities. In a study on 3D organoid
development, wood-derived NFC hydrogels were used to
successfully expedite the differentiation of HepaRG liver
progenitor cell lines in vitro (Bhattacharya et al., 2012). Their
results demonstrated the formation of 3Dmulticellular spheroids
with the morphological hallmarks of hepatic tissue, namely
functional bile canaliculi and apicobasal polarity. Similarly, the
use of NFC hydrogels as a viable medium for human pluripotent
stem cell culture ultimately promises a flexible and xeno-free
resource for application within drug research and regenerative
medicine industries (Lou et al., 2014).

Despite their promise as bioinks for tissue engineering, further
characterization of the toxicological properties, immunogenicity,
and in vivo durability of these materials needs to be elucidated
to determine their validity over widely used synthetic materials
such as polylactic acid and polycaprolactone (Pariente et al.,
2001). Many of the plant-based materials are being translated
from the food industry, where their bioactivity, rheological

properties, and facile gelation have garnered significant interest
in bioprinting (Seidel et al., 2017; Vancauwenberghe et al.,
2017). However, many of the crosslinking methods, especially
those involving high temperatures, harsh chemical conditions
and ultraviolet radiation, warrant further adaptation to ensure
biocompatibility, and cell viability is preserved if these methods
are to be used for tissue bioprinting purposes. The degree of
heterogeneity in biomaterial blends observed in this review
reflects the need to optimize mechanical properties to match the
demands of the target tissue type. As such, further refinement
and characterization of plant-based composite bioinks is both
anticipated and warranted prior to considering their application
for clinical use.

Wound Healing
Hydrogels hold exciting potential for wound healing
applications in maintaining a moist environment conducive
of accelerated healing with high biocompatibility to facilitate
cell migration, proliferation, and reepithelialisation (Liu et al.,
2016; Kamoun et al., 2017). Furthermore, their ability to
encapsulate cells, growth factors, and antibacterials holds
tremendous promise for the bioprinting of customizable wound
dressings (Boateng et al., 2013).

Nanocellulose continues to command significant scientific
interest for its role in the homeostatic regulation of wound
healing. NFC-based hydrogels and films have been shown
to exhibit lower wound adherence, high moisture content,
and the ideal swelling properties to closely emulate in vivo
tissue repair (Madaghiele et al., 2014). The versatility of
nanocellulose is further reflected in its affinity for structural
modification and functionalization. The porosity and surface
topography of NFC hydrogels may be modified to augment
the adsorptive and bacterial anti-adhesion capabilities of the
wound dressing (Jack et al., 2017). Two studies (Rees et al., 2015)
(Chinga-Carrasco and Syverud, 2014) highlighted the potential
benefits of carboxymethylated-periodate oxidized nanocellulose
(C-Periodate NC) for 3D bioprinting and wound dressing
applications. Following comparative analysis, C-Periodate NC
was found to exhibit rheological favourability (i.e., marked shear
thinning, low viscosity) over the TEMPO oxidized alternative
(Rees et al., 2015). C-Periodate’s unique poly-anionic surface
chemistry was also shown to encourage the formation of 3D
micro-porous structures with pH responsitivity. Such technology
may be utilized in chronic woundmanagement for the controlled
release of antimicrobial agents into biofilms (Chinga-Carrasco
and Syverud, 2014).

Alginate has been produced as sponges, foams, fibers, and
hydrogels for wound healing purposes (Sun and Tan, 2013). Its
gel-forming ability enables a moist environment surrounding the
wound, promoting healing, and leading to a superior cosmetic
repair (Zhu et al., 2018). High water absorptivity and optimal
water vapor transmission rate make alginate excellent at treating
wounds with large volume exudate; in addition, cell-adhesion
is limited thereby reducing the occurrence of secondary injury
when removing the dressing, making alginate excellent for use
in burns patients (Mirzaei et al., 2018). Other useful effects
of alginate include a haemostatic effect and stimulation of
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monocytes to produce IL-6 and TNF-α, thus promoting pro-
inflammatory factors which aid in wound healing (Sun and
Tan, 2013). Colonization by potentially pathogenic microbes is a
perceived disadvantage of conventional alginate dressings. Anti-
microbial variants has been created based upon a combination
of alginate and chitosan nanoparticles (Karri et al., 2016), high
concentration M based alginate aerogels with an amidated pectin
and doxycycline core (De Cicco et al., 2016), and combining
alginate and calcium fluorine in a nanocomposite hydrogel,
which inhibit bacterial growth and promotion cell proliferation
for wound healing (Shin et al., 2019). 3D bioprinting personalized
wound dressings holds the potential for the dressings to be
printed as biomimics of the defect site, this may be achievable
by seeding with skin, fat or muscle cells and/growth factors in
order to augment the healing process (Aduba and Yang, 2017)
and would also enable the controlled microspatial placement of
antimicrobial agents.

The potential role of plant derived biomaterials for wound
dressings composed of carrageenan (Yegappan et al., 2018),
starch (Pal et al., 2006; Kamoun et al., 2017), and pectin (Giusto
et al., 2017) have been explored, with evidence of cell migration
into chronic wounds, and the incorporation of antimicrobial
agents having also been documented (Yegappan et al., 2018).

Drug Delivery
The safety and efficacy of drug delivery can be enhanced and
temporally controlled through the attachment to a biomaterial
carrier. Within the 3D bioprinting strategies for versatile drug
delivery, plant-derived scaffolds have demonstrated promise
in numerous clinical settings. In the pharmaceutical industry,
biomaterials such as alginate, and cellulose are used as an
excipient to stabilize and protect the active drug compound,
especially in non-water-soluble drugs (Crowley et al., 2004;
Cardoso et al., 2016). Alginate may also be used as a carrier to
immobilize and encapsulate drugs, bioactive molecules, proteins,
and cells due to its high biocompatibility and biodegradability
(Senna et al., 2018).

Hydrogels, porous scaffolds and microspheres have also
been investigated for controlled drug use. Alginate has been
used to enable modified/extended release of an active drug
within the body (Tønnesen and Karlsen, 2002) and as a
component in the construction of capsules used for cell-
encapsulation. For cytotherapy, combined with chitosan, the
mixture demonstrates high cell viability (Correia et al., 2013)
and may be also combined with calcium carbonate to selectively
trap of molecules on hydrophilic domains, or polyethylene glycol
to protect the microcapsules from acidic environments such as
gastric acid (Borvinskaya et al., 2018; Ren et al., 2018). These
properties have enabled composites of alginate to be trialed
in the treatment of degenerative diseases such as osteoarthritis
(Wang et al., 2011). The controlled delivery of TGF-β, using
macro-porous alginate scaffolds, have been shown to repair
articular cartilage defects in rabbits (Mierisch et al., 2002) and
alginate blended with polyethylene glycol has been used as a
vector in delivering VEGF to hMSCs to encourage osteogenic
differentiation (Miao et al., 2014).

Specific placement of drug molecules in hydrogels such
as alginate is attainable using 3D bioprinting techniques (El-
Sherbiny and Yacoub, 2013). Layer-by-layer assembly of gelatin
and alginate has been used to load insulin-like growth factor-
1 (IGF-1) onto neural stem cells (NSCs); the alginate enabled
modified release of IGF-1 onto NSCs. The result significantly
improved the proliferation and differentiation of NSCs leading to
a potential treatment for nervous system disorders such as stroke
(Li et al., 2015a).

The combined drug delivery and bioink potential of plant
derived materials heralds an exciting future for the development
of targeted chemotherapies and wound management strategies.
NFC-PNIPAM hybrid microspheres were extensively studied by
and exhibited high drug-loading capacity and unique dispersion
properties for 5-fluorouracil. In comparison, polyethyleneimine-
alginate nanoparticles have been shown to be an effective vector
for the transfection of functional DNA and siRNA into target
cells, with potential applications within gene silencing of viral
loaded and malignant cells (Weinberg and Morris, 2016; Wang
et al., 2017).

Nanocellulose materials can also be modified with chitosan
oligosaccharide for the prolonged systemic release of cationic
drugs such as Imipramine and Procaine (Akhlaghi et al.,
2014) whereas the poly-anionic surface chemistry of oxidized
nanocellulose demonstrates a micro-porous architecture with
extensive drug loading capacity and delivery (Chinga-Carrasco
and Syverud, 2014) displaying pH responsivity. As such,
dressings with the potential for controlled and intelligent
antimicrobial and analgesia release could be bioprinted
using this technology. It therefore stands that sustained
future research promises a wealth of insight into the design
of drug delivery systems for novel and biologically active
pharmaceutical technologies.

Implantable Medical Devices
The degradability of biological materials such as starch and
alginate in vivo increases their appeal as a scaffold material
for tissue engineering, enabling their replacement with the
expanding mass of de novo tissue. These properties do however
render them unsuitable for use as a permanent medical device
or implant. Nanocellulose however, generally portrays low
biodegradability in vivo owing to an absence of cellulase enzymes
in vertebrates. With the relatively corrosive internal bodily
environment considered, the innate resistance of cellulose to
external chemical perturbations makes it an invaluable resource
in the development of implant applications. Due to their
pseudoplastic nature, nanocellulose bioinks may be intricately
extruded to form complex and cell compatible 3D hydrogel
constructs with remarkable shape fidelity and definition. In
general, higher nanocellulose concentrations have been shown
to yield better print resolution (Siqueira et al., 2017). Such
malleability also permits for the printing of an infinite number
of structural configurations which may be customized to meet
a range of patient specific requirements. Nanocellulose has
thus been exploited in the generation of 3D bioprinted tissue
implants for soft and hard tissue replacement (Lin and Dufresne,
2014). Of note, CNF-polyurethane based vascular prostheses
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were successfully implanted between the brachiocephalic and
right common carotid artery in a 26-year old male patient with
Multiple Endocrine Neoplasia 2B (Cherian et al., 2011). Similarly,
a viable replacement for native human nucleus palposus was
also constructed from a carboxymethylated CNF bio-composite
hydrogel prepared using UV polymerization of N-vinyl-2-
pyrrolidone (Eyholzer et al., 2011). Other novel approaches have
included the exploration of a CNC-Polyvinylalcohol composite
biomaterial as an external stimuli responsive neural implant
(Shanmuganathan et al., 2010) and the generation of 3D
bioprinted cartilaginous models for in vivo application (Monllau
et al., 2010; Markstedt et al., 2015).

CONCLUSION

The applications of plant derived biomaterials for 3D bioprinting
are immense. Enormous appeal lies in their gelation capacity,
hydrophilicity, and natural rigidity which appear to emulate
the extracellular matrix and render them ideal biological and
mechanical candidates for bioprinting tissues, organs, and
biomedical adjuncts. Further applications of these natural
materials may extend to wound dressings, implantable medical
devices and drug delivery systems, potentiated by coupling
to bioprinting technologies for truly customizable, and

bioactive medical therapies such as wound dressings and
drug delivery systems. There is a need to further refine the
properties of the bioinks, which appear to be enhanced through
combination with other materials to meet the biological and
mechanical demands of different tissue types, and a robust
investigation into the toxicity of the materials is additionally
merited prior to in vivo implementation. Irrespective of the
current challenges for translation to clinical practice, this
renewable, natural, and abundant set of versatile biological
materials hold great promise for revolutionizing the future
of bioprinting.
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