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Abstract 

 
Dy3+-doped chloroborosilicate glasses with the composition 35.7SiO2-25.5B2O3-17BaO-3.4K2O-

3.4Al2O3-15BaCl2 (mol%) were prepared using melt quenching technique. The glass transition 

temperature (Tg) was ~610°C. In UV-Vis-NIR absorption spectra characteristic absorption bands 

of Dy3+ appeared at 322, 347, 364, 388, 795 and 880 nm due to spectral transitions from the 
6H15/2 level to various higher levels of Dy3+ ion. The excitation spectrum was recorded at within 

200–550 nm by monitoring emissions at 576 nm. The excitation bands at 392, 428, 453 and 472 

nm were attributed to the 6H15/2 → 4I13/2, 
4G11/2, 

4I15/2 and 4F9/2 transitions, respectively. Prominent 

emission bands were observed at wavelengths of 484, 576, 664 and 754 nm when excited at 447 

nm. The bands correspond to the transitions 4F9/2→
6H15/2, 

4F9/2 → 6H13/2, 
4F9/2 → 6H11/2, and 4F9/2 

→ 6H9/2 
6F11/2 respectively. The emitted light from all the samples were found to be white. Their 

colour coordinates lie within the white range. The sample containing 0.5 wt% Dy2O3 emitted 

white light with the colour coordinates x=0.351, y=0.335, which are the very closest to pure 

white light and whose colour temperature of 4716 K is similar to daylight. Such white light-

emitting transparent glasses promise to be enormously useful for various photonic applications.   

 

https://crossmark.crossref.org/dialog/?doi=10.1080/21870764.2018.1555883&domain=pdf
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1. Introduction 

Rare earth-doped glasses are excellent luminescent materials because of the occurrence 

of sharp fluorescence in the ultraviolet (UV), visible and infrared (IR) regions due to the 

shielding effects of their outer 5s and 5p orbitals on 4f electrons. These glasses have potential 

applications due to their emission efficiencies of 4f→4f and 4f→5d electronic transitions in the 

RE ion. The Dy3+ ion is one of the most studied rare earth ions. Special attention has been 

focused recently on the study of Dy3+-doped glass scintillators for radiation measurement and 

homeland security applications as well as for dose monitoring for X-rays and protons [1]. Dy3+-

activated glasses and glass phosphores [2,3] have also been studied for obtaining white light as 

well as for blue and yellow laser emissions which find applications in the fields of biomedicine 

and astronomy. Dy3+-ions can be excited easily due to the presence of abundant 4fe4f electronic 

bands [4]. The emission spectrum of Dy3+ ions consists mainly of strong bands corresponding to 

the 4F9/2→
6H15/2 (blue) and 4F9/2→

6H13/2 (yellow) transitions accompanied by a weak 4F9/2→
6H11/2 

(red) transition in the visible range. Numerous Dy3+-doped glass systems therefore were studied 

for obtaining white light through appropriate combinations of these luminescent band intensities 

[5] and two primary-colored luminescent materials. The spectroscopic properties of rare earth 

ions depend on their 4f-4f transitions and can be controlled by changing the chemical 

composition of the host glass matrix. 

The luminescence properties of Dy-doped high silicate glass were investigated by Nagli 

et al. who observed visible luminescence around 570 nm with 447 nm excitation [6].  The optical 

properties resulting from Dy3+ doping in the PbO-PbF2 oxyfluoride glass matrix were 

investigated by Nachimuthu et al. the first of the two most dominant emissions of Dy3+ is the 

blue emission at 481 nm due to the 4F9/2 → 6H15/2 transition and the second appears in the yellow 

range at 575 nm due to the 4F9/2 → 6H13/2 transition [7]. Spectroscopic properties of Dy3+ ions in 
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lithium borate and lithium fluoroborate glasses were presented by Babu et al. [8]. The 

fluorescence properties of Dy3+ ions in two concentrations (1.0 and 0.1 mol%) have been 

investigated in a variety of borate and fluoroborate glasses modified with lithium, zinc, and/or 

lead. The fluorescence spectra emitted by the Dy3+ ions embedded in title glasses, when excited 

with a 457.9 nm laser, consist of 4F9/2 → 6HJ transitions in the visible and near infrared ranges of 

the spectrum. The blue (4F9/2 → 6H15/2) at ∼485 nm and yellow (4F9/2 → 6H13/2) at ∼575 nm 

emission transitions are relatively more intense than the other emission transitions (4F9/2 → 
6H11/2,9/2,7/2) observed in the red and near infrared regions [9]. The photoluminescence properties 

of Dy3+-doped transparent oxyfluoride alumino-silicate glasses have been reported by 

Lakshminarayana et al. A bright fluorescent yellow emission at 575 nm (4F9/2→
6H13/2) and a blue 

emission at 484 nm (4F9/2→
6H15/2) have been observed [10]. It was also observed, that strong 

blue 484 nm and yellow 574 nm emission bands appear in the Dy3+ doped ZnO–B2O3–P2O5 

(ZBP) glasses upon various excitations. Combination of these blue and yellow bands produces 

white light to the naked eye. It was found that ZnO–B2O3–P2O5 glasses emit white light 

efficiently under 400 and 454 nm excitations, which are closely matched with the emissions of 

commercial GaN blue LEDs and InGaN LEDs, respectively [11]. Optical properties of Dy3+-

doped phosphate and fluorophosphates glasses have been investigated. A strong yellow emission 

was observed from the 4F9/2→
6H13/2 transition of Dy3+ ions in these glasses [12]. Dy-doped 

oxyfluoride glasses and nanocrystalline glass ceramics were found to emit intense white light 

when the 4F9/2 level is inundated with 451 nm laser light. The chromaticity color coordinates of 

the visible emissions were calculated and found to be in the white light zone [13]. It was 

observed from the emission spectra of calcium fluoroborate (CFB) glasses doped with different 

concentrations of Dy3+ ions that the samples emit intense yellowish light which is close to white 

light [14].  The spectroscopic properties of silicate glasses doped with different concentrations of 

Dy3+ ions were studied. Simulation of white light for these glasses was also performed by 

varying the excitation wavelength. The results showed that the white light luminescence could be 

tuned to various wavelength excitations, making the glass suitable for generation of white light 

for blue LED chips [15]. Lead tungsten tellurite (LTT) glasses doped with different Dy3+ ion 

concentrations also show the usual characteristic absorption and emission bands of Dy3+ and 

emit white light [16].  The optical properties of Dy3+-doped lead phosphate glasses were also 

reported. The yellow-to-blue emission intensity ratios and CIE chromaticity coordinates were 
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calculated and used to evaluate white light emissions as a function of the activator (Dy3+) ion 

concentration [17]. Niobium phosphate glasses doped with different concentrations of Dy3+ ions 

have been synthesized and characterized to evaluate their fluorescence properties and determine 

their suitability for white light-emitting diodes (LEDs) [18]. White light emissions by 

dysprosium-doped lanthanum calcium phosphate oxide and oxyfluoride glasses were reported by 

Luewarasirikul et al. The emission spectra, excited with a 349 nm excitation wavelength, showed 

two major peaks corresponding to 482 nm blue and 574 nm yellow emissions. The (x,y) color 

coordinates under the 349 nm excitation wavelength were (0.38, 0.43) for both glass samples, 

which is in the white range of the CIE 1931 chromaticity diagram. The CCT values obtained 

from the glass samples were 4204 K for oxide glass and 4228 K for oxyfluoride glass which 

corresponds to commercial cool white light (3100 -4500 K) [19]. The spectroscopic properties of 

Dy3+- doped Li2O-B2O3 glasses were studied for white light-emitting material applications. The 

colour coordinates (x, y) of the studied glass samples were found to be (0.37, 0.40), which fall in 

the white light range of the chromaticity diagram [20]. Dy3+-doped lithium borate glasses were 

studied for white LED applications. The CIE chromaticity chart shows that glass containing 0.5 

mol% Dy2O3 has the colour co-ordinates x = 0.33 and y = 0.37, which are nearly equal to those 

of pure white light. All these glasses produce emission in the white range and can thus be used 

for bright white LED's and modern white LED bulbs [21]. 

From the above discussion it can be inferred that Dy3+-doped glasses offer immense 

promise for photonic applications, especially as white light-generating materials. It will therefore 

be worthwhile to dope some new glass systems with Dy3+ and study their absorption and 

emission properties to find new white light-emitting materials.  In response to this motivation, 

we investigated the synthesis and characterization of Dy3+ ion-ingrained low-phonon 

chloroborosilicate glass matrix with the composition 35.7SiO2-25.5B2O3-17BaO-3.4K2O-

3.4Al2O3-15BaCl2 (mol%). We chose this composition because it is a new, stable and transparent 

glass, which is also known to have low phonon energy, as reported earlier [22]. Different 

concentrations of Dy3+ have been incorporated in the glass. We characterized the transparent 

Dy3+-doped glasses by density measurement, x-ray diffraction, differential scanning calorimetry, 

dilatometry, refractive index measurement, UV-Vis-NIR absorption spectra, excitation spectra 

and emission spectra. Visible luminescence of a white colour was observed in all the samples at 
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447 nm excitation. These glasses are potential materials for various photonic applications, 

including white light emitters, i.e., WLED (white light-emitting diodes).    
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2. Experimental 

2.1 Glass preparation 

Chloroborosilicate glass (CBS) with the composition 35.7SiO2-25.5B2O3-17BaO-

3.4K2O-3.4Al2O3-15BaCl2 (mol%) was prepared using the melt quenching technique from 

quartz, SiO2 (GR, Bremthaler, Quarzitwerk, Usinger. Germany), boric acid, H3BO3 (GR, 99%, 

Loba Chemie, Mumbai, India), barium carbonate, BaCO3 (GR, 99%, Fluka Chemie GmbH, 

Buchs, Switzerland), potassium carbonate, K2CO3 (GR, 99%, Loba Chemie, Mumbai, India), 

aluminium oxide, Al2O3 (GR, Aldrich Chemical Company Inc, Milwaukee 53233, USA) and 

barium chloride, BaCl2.2H2O (GR, Dihydrated extra pure, Loba Chemie, Mumbai, India) as the 

raw materials. They were used directly with no further purification. 60 g of glass was prepared 

by melting well-mixed batches of the calculated composition in a high-purity alumina crucible at 

1250°C for 1.5 h with intermittent stirring for 0.5 min in air in a raising hearth electric furnace. 

The molten samples were cast into an iron plate in air and annealed at 550ºC for 2 h in order to 

remove the residual thermal stresses, followed by a slow cooling down to room temperature. 

Five more glasses of the same composition were prepared with the addition of (i) 0.1, 0.3, 0.5, 

0.7 and 1 wt% Dy2O3 in excess (GR, 99%, Loba Chemie, Mumbai, India) using the same 

procedure and annealed at 550ºC following the same schedule. The monolithic glasses thus 

obtained were cut and polished into the shapes and sizes required for the different 

characterizations, as described below.  
2.2 Characterization 

Differential scanning calorimetric experimentation was performed with a differential 

scanning calorimeter (NETZSCH Model STA 449 Jupiter F3, NETZSCH-Gerätebau GmbH, 

Selb, Germany) using powdered sample within the temperature range of 30o-900oC in a nitrogen 

atmosphere at a heating rate of 10 K/min. The coefficient of thermal expansion (CTE, α), glass 

transition temperature (Tg), and dilatometric deformation temperature (Td) were measured using 

a horizontal vitreous silica dilatometer (DIL 402C, Netzch-Gerä tebau GmbH, Bavaria, 

Germany) at a heating rate of 4 K/min by heating a cylindrical sample approximately 25 mm 

length and 5 mm diameter at a rate of 4 K/min up to the temperature at which the glass softened, 
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after calibration with standard alumina supplied with the instrument by the manufacturer. The Tg 

and Td values were reproducible within ±1 ºC for all samples. The X-ray diffraction (XRD) 

patterns of the bulk samples were recorded in an X’pert Pro MPD diffractometer (PANalytical, 

Almelo, the Netherlands), operating at 40 kV and 30 mA, using Ni-filtered CuKα radiation with 

the X’celerator, with a step size of 0.05º(2θ) and a step time of 0.5s, at 10º to 80º. The UV-Vis 

absorption spectra and the PL spectra of all the samples were studied using polished 2 mm thick 

samples with the use of a fiber optic spectrometer (AvaSpec-3648-USB2, Avantes) and diode 

lasers with a 447 nm wavelength source. Photoluminescence spectrophotometer (model: custom 

made Quantum-Master: Enhanced NIR of Photon Technologies International, Canada) was 

employed for recording of the excitation spectra.  

 

3. Results and Discussion 

The compositions and physical properties of the glasses with the general composition 

36.75SiO2-26.25B2O3-20BaO-3.5K2O-3.5Al2O3-12.5BaCl2 (mol%) are listed in Table 1. All the 

samples were obtained as colourless, transparent monoliths. Figure 1 shows photographs of the 

prepared samples. 

Table 1. Composition and physical properties of samples 

Sample ID Dy
2
O

3 
Content (wt%) Colour Form 

CBS - Colourless Transparent monolith 

CBSD1 0.1 Colourless Transparent monolith 

CBSD2 0.3 Colourless Transparent monolith 
CBSD3 0.5 Colourless Transparent monolith 
CBSD4 0.7 Colourless Transparent monolith 

CBSD5 1.0 Colourless Transparent monolith 
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3.1 Density  

The densities (ρ) of the glass samples were determined by the standard Archimedes 

principle. The measurements were done using a single pan balance and distilled water as an 

immersion liquid. The densities were obtained from the following relationship: 

 

                                                   ρ = a ρx / (a-b)                                                                (1) 

 

where a is the weight of the glass sample in air, b is the weight of the glass sample when 

suspended in distilled water (density of water, ρx = 0.997604 g·cm−3 at 25oC). Their densities are 

in the range of 3.5-3.6 g·cm−3. The density of the glasses did not vary much as their composition 

was almost the same. The base glass composition was the same for all samples, only only very 

small variations in rare earth content that do not have visible impact on the density of the glass. 

A very slight variation was observed in the 4th decimal place. The measured densities are listed 

in Table 2.  

3.2 Differential Scanning Calorimetry and Dilatometry 

Differential scanning calorimetry (DSC) was performed to determine the Tg and thermal 

behaviour of the glass by heating finely ground powder of the base glass (CBS) at the rate of 

10K/min from 30-9000C. The DSC thermogram is shown in Fig 2(a). Tg was determined to be 

about 612ºC. 

The glass transition temperature (Tg) and dilatometric softening point (Td) of CBS were 

measured by dilatometric measurement by heating a cylindrical sample approximately 25 mm in 

length and 5 mm in diameter at a rate of 4K/min up to the temperature at which the glass 

softened. Figure 2(b) shows the dilatometric curve of the glass. Tg and Td were determined to be 

around 610º and 650ºC, respectively. The Tg determined by dilatometry and DSC are closely 

similar temperatures. 

3.3 XRD 

The formation of the glasses was explicitly determined by XRD analysis. Figure 3 shows 

the XRD patterns of all the samples. The hump between 2θ = 20o-35o indicates amorphocity of 
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the glasses. The presence of this hump and absence of any peaks in the samples indicate that they 

are amorphous in character and can be considered to be glasses. 

3.4 Refractive Index 

The Refractive index (ni) at different wavelengths was measured for all the transparent 

glasses by Prism coupler using lasers of five different wavelengths. Figure 4 shows the variations 

in the refractive indices of different glasses with respect to wavelength. The refractive indices are 

in the range of 1.6064-1.6195 for a 532 nm wavelength. The ni shows a very slight gradual 

increase with increases in the Dy2O3 content. It is evident that the value of ni shows no 

noticeable change as there are only very slight variations in the compositions of the samples and 

their densities are almost identical. The ni of any particular medium is the ratio of the velocity of 

light through the vacuum (c) to the velocity of light through the medium (v).  

                                                                   ni = c/v                                                                        (2) 

As the glass becomes denser the velocity of light passing through it, decreases. Hence, the higher 

the density of the glass, the higher the refractive index. As all the samples here, are almost 

equally dense, the velocities of light through them are nearly equal, which resulting in almost no 

variation in the ni values. The slight increase in ni is due to slight variations in the density of the 

glasses. Table 2 lists some calculated properties of the glasses.  

Table 2. Some measured and calculated properties of the glasses                                                  

Sample ID CBS CBSD1 CBSD2 CBSD3 CBSD4 CBSD5 

Measured properties       

Density, ρ 
(g.cm-3) 3.4960 3.5381 3.5507 3.5608 3.5807 3.6099 

Refractive index, ni 

(at 532 nm) 1.6064 1.6159 1.6169 1.6173 1.6185 1.6195 

Calculated properties       

Average molecular weight, M (g.mol-1) 100.60 100.60 100.60 100.60 100.60 100.60 
Molar volume ,Vm 

(cm3.mol-1) 28.78 28.43 28.33 28.25 28.09 27.87 

Average molar refraction, Rm (cm3.mol-1) 9.9319 9.9346 9.9123 9.8893 9.8497 9.7827 
Electronic polarizability, αm (Å) 3.94 3.94 3.93 3.92 3.91 3.88 
Metallization criterion, M 0.6549 0.6506 0.6501 0.6499 0.6494 0.6489 

Abbe number, Dυ  59.11 58.905 59.548 58.462 59.152 59.248 

Dispersive power, Dυ1  0.01691 0.016977 0.016793 0.017105 0.016905 0.016878 
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3.5 UV-Vis Absorption 

Figure 5 shows the UV-Vis absorption spectra of the samples, which reveal that all the 

samples are transparent in the visible and NIR ranges. The samples containing Dy3+, i.e. CBSD1 

to CBSD5, show absorption bands at around 322, 347, 364, 388, 795 and 880 nm, which are 

characteristic absorption bands for Dy3+ that appear due to spectral transitions from 6H15/2 → 
4L19/2 ,  

6H15/2 → 4M15/2, 
6P7/2, 

6H15/2 → 4I11/2, 
6H15/2 →   

4I13/2, 
4F7/2, 

6H15/2 → 6F1/2, 
6F3/2, and 6H15/2 

→ 6F5/2, 
6F7/2, 

6H5/2 level of Dy3+ ions, respectively [21]. As the concentration of Dy3+ increases 

from CBSD1 to CBSD5, the absorption bands become increasingly prominent and sharper. As 

the blank glass CBS does not contain Dy3+, its spectra do not exhibit any absorption bands.  

3.6 Excitation Spectra 

To analyze the luminescence properties as functions of the Dy3+ ion concentration, the 

excitation spectrum was recorded in the spectral range of 200–550 nm for all the samples by 

monitoring the emissions at 576 nm as shown in Fig. 6. The excitation bands centered at 392, 

428, 453 and 472 nm are attributable to the 6H15/2 → 4I13/2, 
6H15/2 → 4G11/2, 

6H15/2 → 4I15/2 and 
6H15/2 → 4F9/2 transitions, respectively. The broad band in the range of 230–340 nm can be 

attributed to the host absorption band (HAB), since the charge transfer band (CTB) of Dy3+–O2- 

is located below 220 nm [23,24]. It is well-known that the wavelength corresponding to the 

prominent excitation band can give rise to intense emissions. In the present investigation, the 

excitation band centered at 453 nm was found to be most intense. Thus, the luminescence spectra 

should be carried out by exciting the samples with a 453 nm wavelength in order to achieve the 

maximum emission intensity. Due to the unavailability of a 453 nm excitation source, the 

emission spectra were recorded using a 447 nm (extremely close to 453 nm) laser diode [24].   

3.7 Photoluminescence Spectra 

Figure 7 shows the PL spectra of the samples CBSD1 to CBSD5. They exhibit prominent 

emission bands at wavelengths of 484 nm (blue), 576 nm (yellow), 664 nm (red) and 754 nm 

(near infrared).  The major band at 576 nm is in the yellow range of the visible spectrum. It is 

evident from the figure that the emission intensity of the samples increases gradually from 

CBSD1 to CBSD5 i.e. with increases in Dy2O3 content. The inset in the figure displays the 

variations in emission intensity of the major band (576 nm) for all the samples. It shows gradual 
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increments in PL intensity with increases in the concentration of Dy3+. There are no occurrence 

of concentration quenching for Dy3+ in the CBS glass matrix within the observed concentration 

range.   

Figure 8 presents a partial energy level diagram of a Dy3+ ion showing the energy transfer 

mechanisms for the major bands in the down-conversion spectra. The 447 nm excitation 

wavelength promotes the electrons from the 6H15/2 level to the higher 4I15/2 level resulting in 

increased inundation in this level. The excited electrons then jump to the intermediate 4F9/2 

energy level through non-radiative transition. Radiative transitions take place from the 4F9/2 level 

to various lower energy levels resulting in visible emissions from the samples. The bands at 484, 

576, 664 and 754 nm correspond to the transitions 4F9/2→
6H15/2 (ΔJ=3, forbidden transition), 

4F9/2 → 6H13/2 (ΔJ=2, hypersensitive electric dipole transition), 4F9/2 → 6H11/2 (ΔJ=1, magnetic 

dipole transition), and 4F9/2 → 6H9/2 (ΔJ 0, zero–zero band, forbidden transition), 6F11/2, 

respectively [24].  

The light emitted from the luminescent samples is white in colour. Figure 9(a) shows a 

chromaticity chart corresponding to the light emitted from sample CBSD3 when excited at 447 

nm with a diode laser source. The point “P” represents the chromaticity coordinates (x=0.351, 

y=0.335) of the emitted light. Figs 9(b) and 9(c) are the photographs of the luminescent sample 

(CBSD3) when excited at 447 nm. Both the colour coordinates and the photographs clearly show 

that the emitted light is white. The coordinates are very close to those of pure white light (0.333, 

0.333). 

Figure 10 shows the positions of the chromaticity coordinates of the light emitted by all 

the samples when excited at 447 nm. It can be seen that all the emitted light is white since all the 

coordinates lie within the white range of the chromaticity chart. Compared to the colour 

coordinates of all the other glasses under investigation, those of the light emitted by CBSD3 are 

closest to pure white light. Table 3 presents the colour coordinates of the samples and their 

colour temperature values. From the coordinates shown in the table, it is quite clear that the 

coordinates of light emitted by all the glasses are very close to each other. Since the coordinates 

of pure white light are x = 0.333, y = 0.333, all the samples under observation emit light that is 

remarkably close to pure white light. The colour temperature ranges from 3800 to 4700 K, which 
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is in the “cool white” range of white light. For CBSD-3 the colour temperature is 4716 K, which 

is comparable to daylight.  

Table 3 Colour coordinates of the Dy3+-doped CBS glasses 

 

The colour of the emitted light depends on the ratio of the intensities of different emission bands. 

In the emission spectra of Dy3+-doped CBS glasses, the major bands are found at 484 and 576 

nm, which are in the blue and yellow ranges of the visible spectrum, respectively. The intensity 

ratio of these two bands determines the colour of the emitted light. Table 4 represents the 

intensity ratios of these two bands for all the Dy3+-doped samples.  

Table 4 Intensity ratio of emission bands at 484 and 576 nm 

Sample ID I484 I576 I576/ I484 
CBSD1 5484 16270 2.97 
CBSD2 7785 22440 2.88 
CBSD3 11483 33215 2.89 
CBSD4 13085 38464 2.94 
CBSD5 13208 39385 2.98 

 

It is apparent from the table that the intensity ratios are in the range of 2.88 to 2.98. The ratios 

are very close to each other. That is why the coordinates of the emitted colours are also very 

close and why all of them fall within the white range. CBSD-3 which has the closest coordinates 

to those of pure white light has an intensity ratio of about 2.89. Based on these observations, it 

can be concluded that the white light emitted by Dy3+-doped CBS glasses under an excitation of 

447 nm will be the closest to the pure white light if and only if the intensities of the two 

emissions, i.e., 576 and 484 nm, obey the ratio of I576/ I484 = 2.89. 

The photoluminescence spectra have been obtained at different laser source powers. 

Figure 11 shows the PL spectra of sample CBSD-3 at various 447 nm laser powers. The 

Sample ID X- axis Y- axis Colour Temp (K) 
CBSD-1 0.376 0.364 4046 
CBSD-2 0.363 0.346 4317 
CBSD-3 0.351 0.335 4716 
CBSD-4 0.369 0.353 4099 
CBSD-5 0.392 0.389 3803 
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emission intensity increases gradually with increases in power. The enhancement of intensity 

with the raising of pump power indicates an increase in the inundation inversion, whereas all the 

peak positions in the PL spectra remain the same. The inset in Fig. 11 shows a plot of log of PL 

intensity versus a log of excitation power. Using the I versus PK relationship (where I is intensity, 

P is power, and K is the order), the value of K is found to be around 1.06. The mechanism in this 

case is therefore on the order of one photon. 

4. Conclusions 

Dy3+-doped chloroborosilicate glasses with the composition 35.7SiO2-25.5B2O3-17BaO-3.4K2O-

3.4Al2O3-15BaCl2 (mol%) were prepared using a melt quenching technique; Dy3+ was doped in 

different concentrations (0.1, 0.3, 0.5, 0.7 and 1 wt% in excess). The transparent glasses were 

then characterized by several methods. The following conclusions can be drawn from the above 

results and discussion: 

• The densities of the glasses are in the range of 3.5-3.6 gcm-3. 

• The glass transition temperature (Tg) is ~610°C, as obtained from differential scanning 

calorimetry and dilatometry. 

• The samples are found to be X-ray amorphous. 

• The refractive indices are in the range of 1.60 to 1.62 

• The UV-Vis-NIR absorption spectra reveal that the glasses are transparent within the 

entire visible range. The characteristic absorption bands of Dy3+ appear at 322, 347, 364, 

388, 795 and 880 nm. They appear due to spectral transition from the 6H15/2 → 4L19/2 ,  
6H15/2 → 4M15/2, 

6P7/2, 
6H15/2 → 4I11/2, 

6H15/2 →   
4I13/2, 

4F7/2, 
6H15/2 → 6F1/2, 

6F3/2, and 6H15/2 

→ 6F5/2, 
6F7/2, 

6H5/2 levels of Dy3+ ions, respectively. 

• The excitation spectrum was recorded in the spectral range of 200–550 nm for all the 

samples by monitoring the emissions at 576 nm. The excitation bands centered at 392, 

428, 453 and 472 nm are attributable to the 6H15/2 → 4I13/2, 
4G11/2, 

4I15/2 and 4F9/2 

transitions, respectively 

• Under excitation of 447 nm, prominent emission bands were found at wavelengths of 484 

nm (blue), 576 nm (yellow), 664 nm (red) and 754 nm (near infrared) which correspond 
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to the transitions 4F9/2→
6H15/2, 

4F9/2 → 6H13/2, 
4F9/2 → 6H11/2, and 4F9/2 → 6H9/2 

6F11/2, 

respectively. The band at 576 nm is the major one. 

• PL intensity gradually increases with increases in the Dy3+ concentration, with no 

concentration quenching occurring within the experimental range. 

• The emitted light from all the samples was found to be white. Their colour coordinates, 

all lie within the white region. The sample containing 0.5 wt% Dy2O3 emits white light 

with colour coordinates x=0.351, y=0.335 and a colour temperature of 4716 K, which 

appears to be the very closest to pure white light and similar to daylight.  

• Variation of the excitation source power revealed the process to be single photonic.  

• These white light-emitting transparent glasses promise to be enormously useful for 

various photonic applications, especially in WLEDs.  
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Fig. 1 Photoograph of thhe polishedd samples (F              

From left too right CBSD1 to CBSD  D5) 
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 Fig. 2 (a) DSC thermogram, (b) dilatometric curve of the base glass (CBS) 
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 Fig. 3 XRD pattern of the samples 
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 Fig. 4 Variation of refractive index of the samples as a function of wavelength; inset shows the variation of refractive index of the base glass with wavelength. 
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 Fig. 5 UV-Vis absorption spectra of the samples 
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 Fig. 6 Excitation spectra of the samples at excitement wavelength 576 nm 
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 Fig. 7 
 

 

 

 

 

PL spectraa of the saminten
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Fig. 8 Partial energy level diagram of Dy3+ ion showing transitions of major emission bands            
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  Fig. 9 (a) Chromaticity diagram corresponding to the light emitted from sample CBSD3 when excited at 447 nm with a diode laser source. The point “P” represents chromaticity coordinates (x=0.351, y=0.335) of the emitted light; (b) and (c) show the photoluminescence photograph of CBSD3, when excited at 447 nm  
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 Fig. 10 Chromaticity coordinates of the emitted lights from the samples  (when excited at 447 nm). 
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 Fig. 11 Variation of PL intensity with power of the diode laser 
 




