Kundu, Sukanya and Hazra Chowdhury, Ipsita and Naskar, Milan Kanti (2018) Nitrogen-Doped Nanoporous Carbon Nanospheroids for Selective Dye Adsorption and Pb(II) Ion Removal from Waste Water. ACS Omega, 3 (8). pp. 9888-9898. ISSN 2470-1343

PDF - Published Version
Download (10Mb) | Preview


In the presence of melamine and block copolymers, namely, F108, F127, and P123, nitrogen-doped nanoporous carbon nanospheroids (N@CNSs) were synthesized by the hydrothermal process. The F127-modified sample (CNF127) exhibits the maximum BrunauerEmmettTeller (BET) surface area of 773.4 m(2)/g with a pore volume of 0.877 cm(3)/g. The microstructural study reveals that nanospheroids of size 50200 nm were aggregated together to form a chainlike structure for all triblock copolymer-modified samples. The X-ray photoelectron spectroscopy study shows the binding energies of 398.33 and 400.7 eV attributed to sp(2) (CN-)- and sp(3) (CN)-hybridized nitrogen-bonded carbons, respectively. The synthesized N@CNS samples showed selective adsorption of organic dye methylene blue (MB) in the presence of methyl orange (MO) as well as Pb(II) ion removal from contaminated water. The adsorptions for MB and Pb(II) ions followed pseudo-first-order and pseudo-second-order kinetic models, respectively. The sample CNF127 showed the highest adsorption of 73 and 99.82 mg/g for MB and Pb(II) adsorptions, respectively. The adsorption capacity for MB of the copolymer-modified samples follows the order CNF127 > CNP123 > CNF108, which corroborated with the mesoporosity as well as nitrogen content of the corresponding samples. The maximum % adsorption of Pb(II) follows the order CNF127 (99.82%) > CNF108 (98.74%) > CNP123 (91.82%), and this trend is attributed to the BET surface area of the corresponding samples. This study demonstrates multicomponent removal of water pollutants, both organic dyes and inorganic toxic metal ions.

Item Type: Article
Subjects: Environment and Pollution
Divisions: Sol Gel
Depositing User: Bidhan Chaudhuri
Date Deposited: 31 Oct 2018 12:21
Last Modified: 31 Oct 2018 12:21
URI: http://cgcri.csircentral.net/id/eprint/4415

Actions (login required)

View Item View Item