Samanta, Aniruddha and Bhattacharya, Manjima and Dalui, Srilzanta and Acharya, Megha and Das, Pradip Sekhar and Chanda, Dipak Kr and Acharya, Saikat Deb and Sivaraman, Sankar Kalidas and Nath, Shekhar and Mandal, Ashok Kumar and Ghosh, Jiten and Mukhopadhyay, Anoop Kumar (2016) Nanomechanical responses of human hair. Journal of the Mechanical Behavior of Biomedical Materials, 56. pp. 229-248. ISSN 1751-6161

[img] PDF - Published Version
Restricted to Registered users only

Download (6Mb) | Request a copy


Here we report the first ever studies on nanomechanical properties e.g., nanohardness and Young's modulus for human hair of Indian origin. Three types of hair samples e.g., virgin hair samples (VH), bleached hair samples (BH) and Fe-tannin complex colour treated hair samples (FT) with the treatment by a proprietary hair care product are used in the present work. The proprietary hair care product involves a Fe-salt based formulation. The hair samples are characterized by optical microscopy, atomic force microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy (EDAX) genesis line map, EDAX spot mapping, nanoindentation, tensile fracture, and X-ray diffraction techniques. The nanoindentation studies are conducted on the cross-sections of the VH, BH and FT hair samples. The results prove that the nanomechanical properties e.g., nanohardness and Young's modulus are sensitive to measurement location e.g., cortex or medulla and presence or absence of the chemical treatment. Additional results obtained from the tensile fracture experiments establish that the trends reflected from the evaluations of the nanomechanical properties are general enough to hold good. Based on these observations a schematic model is developed. The model explains the present results in a qualitative yet satisfactory manner. (C) 2015 Elsevier Ltd. All rights reserved.

Item Type: Article
Subjects: Engineering Materials
Divisions: Non-Oxide Ceramics & Composites
Depositing User: Bidhan Chaudhuri
Date Deposited: 07 Nov 2016 11:41
Last Modified: 24 Jun 2020 05:09

Actions (login required)

View Item View Item