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In situ electron beam irradiated rapid 
crystallization of bismuth nanoparticles in 
bismuth glass dielectrics at room temperature 
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Abstract In this work, in situ control growth of bismuth nanoparticles (Bi0 NPs) was 

demonstrated in bismuth glass dielectrics under an electron beam (EB) irradiation at 

room temperature. The effects of EB irradiation were investigated in situ using 

transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and 

high-resolution transmission electron microscopy (HRTEM). The EB irradiation for 2 to 

8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure 

and diameter of 4-11 nm. The average particle size was found to increase with the 

irradiation time. Bismuth metal has a melting point of 2710C and this low melting 

temperature makes easy the progress of energy induced structural changes during in situ 

TEM observations. This is a very useful technique in nano-patterning for integrated 

optics and other applications. 
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Introduction 
 
 
Recently, new and useful optical and electronic effects associated with metal, 

semiconductor and oxide nanocrystals have been discovered (Wang et al. 2005; 

Grzelczak et al. 2008). The inherent properties of a metallic nanostructure can be 

monitored by controlling its shape, size, composition, and crystallinity. The shape-control 

of these nanocrystals is very effective in tailoring the properties and functions of the 

metallic nanostructures. Whereas, the particle size of the crystalline materials approaches 

to the nanometer range exhibits a variety of interesting optical, electronic, and magnetic 

features (Wang et al. 2010; Jana et al. 2001; Wang et al. 2008; Balan et al. 2004). 

 
Electron beam (EB) irradiation is a powerful technique that has recently attracted 

interest of various researchers as an effective tool for in-situ generation of various 

nanocrystals in different hosts (Kim et al. 2007; Sepulveda-Guzman et al. 2007; Kim et 

al. 2005). In the particular case of metallic nanoparticles, electron beam irradiation offers 

the advantage such as much higher local concentration of nanocrystal precipitates can be 

achieved than those produced in other methods. The bulk glass exhibited enhanced third-

order optical nonlinearity effects by conventional approaches; on the other hand, electron 

beam irradiation produces significant radiation effects in the host glass material. The 

glass samples were used as suitable materials as the glassy state is considered to have a 

higher homogeneity than that of other sintered materials. Thus the electron beam 

irradiation effect can lead to extraordinary microstructures or large size dispersions of 

embedded nanocrystal in the host glass materials. Such extraordinary nanostructure 
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formed as a result of electron beam irradiation may be exploited and find use in future 

generations of optical devices.  

Over the past few years, bismuth nanostructures have been extensively studied 

because of their magnetoresistance and excellent thermoelectric properties (Gao et al. 

2003; Derrouiche et al. 2010; Carotenuto et al. 2009). The ability to synthesize well-

defined and synthetically tunable nanoparticles could bring in new opportunities for 

fundamental studies as well as provide new viewpoint for various technological 

applications. Bismuth, a semimetal with a rhombohedral structure, possesses many useful 

properties such as it has a small energy overlap between the conduction and valence 

bands, high carrier motilities, and highly anisotropic Fermi surface that make it attractive 

for different applications (Wang et al. 2005; Wang et al. 2008; Grass et al. 2006). Small 

effective mass makes bismuth nanoparticles an interesting scheme for studying quantum 

confinement effects (Gao et al. 2003; Gekhtman et al. 1999). Recent work also has 

suggested that Bi materials of reduced dimensions may exhibit enhanced thermoelectric 

properties at room temperature (Zhang et al. 1999). 

 
Various researchers have carried out different experiments on the change of 

morphology of bismuth nanoparticles under the electron beam irradiation in TEM.  Kim 

et al. 2007 have studied controlled growth of bismuth nanoparticles from bismuth 

trichloride by electron beam irradiation in TEM with respect to time. Sepulveda-Guzman 

et al. 2007 have synthesized bismuth nanoparticles from sodium bismuthate and exposed 

to an electron beam at room temperature in a transmission electron microscope (TEM). 

The electron beam irradiation exhibited rhombohedral structure of bismuth nanoparticles 

with diameter of 6 nm. The one-pot fabrication of thiol-stabilized monodisperse gold 
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nanoparticles was reported by Kim et al. 2005 through the electron beam irradiation with 

highly ordered supramolecular structures. 

With best of our knowledge, there is no any report on transmission electron 

microscope (TEM) based study on the formation of bismuth nanocrystals under electron 

beam irradiation in the bismuth glass dielectrics. The bismuth glass dielectric is it self a 

very fascinating material from the point of view of various technological applications. 

Therefore, in this work, we demonstrated how the effect of electron beam irradiation is 

used to good advantage in the formation of bismuth nanocrystals in bismuth glass 

dielectrics.  

 

Experimental 
 
 
High purity bismuth trioxide, Bi2O3 (Loba Chemie), boric acid, H3BO3 (Loba Chemie), 

zinc oxide, ZnO (Loba Chemie), potassium carbonate, K2CO3 (Loba Chemie), silicon 

dioxide, SiO2 (Bremthaler/Quarzitwerk) and potassium peroxodisulphate, K2S2O8 

(Merck) were used as raw materials to prepare glasses. 25 g glass dielectric of 

composition (wt %) 19B2O3-23ZnO-45Bi2O3-9SiO2-(4-x)K2O- xK2S2O8, where x = 0 and 

0.5 was melted in a 50 ml high purity silica crucible at 1100oC in air for 30 min in a 

raising hearth electrical furnace with intermittent stirring for 0.5 min. The molten glass 

was cast onto a carbon plate and annealed at 420oC for 2h to release the internal stresses. 

Samples of 2  0.01 mm thickness were prepared by cutting, grinding and polishing for 

optical measurements. 

 The UV-Vis absorption spectra in the range of 200-1100 nm were recorded using 

a double beam UV-visible spectrophotometer (Lambda 20, Perkin-Elmer) at an error of 
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+0.1 nm. The TEM, SAED and HRTEM images were taken using a FEI instrument 

(Tehnai-30, ST G2) operating at an accelerating voltage of 300 kV. The instrument is also 

equipped with ultrahigh-resolution observation system. 

 

Results and discussion 

 
Bismuth glass dielectrics have great advantages over other types of glass dielectrics for 

its various technological applications as well as scientific study in the field of 

optoelectronics, photonics, various types of sensors etc (Peng et al. 2009; Ebendorff-

Heidepriem et al. 2004; Ren et al. 2008). But these bismuth glass dielectrics have some 

drawbacks. These glasses show graying or blackening color when melted above 1000oC. 

The intensity of graying or blackening enhance with the rise in melting temperature as 

well as Bi2O3 content. This intensification of color is due to auto-thermo reduction of 

Bi3+ ions to bismuth metal (Bio) during the process of melting. The reduction of Bi3+ ions 

to Bio occurs through the following thermal dissociation reaction (Zhang et al. 2008; Sanz 

et al. 2006)  

 

                2Bi2O3  4Bio + 3O2                               Eo =  0.31V                    (1) 

 

The metallic Bio is produced in a uncontrolled manner with the liberation of oxygen as 

shown in the above equilibrium reaction. This formation of metallic bismuth could be 

controlled by the oxidation process. Therefore, when the strong oxidizing agent, such as 

K2S2O8, is added in the glass composition, it increases the oxygen partial pressure. 
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Thermal dissociation of K2S2O8 during melting process at high temperature is as follow 

(Mellor 1947)  

 

                K2S2O8     K2O + 2SO3     + ½ O2                 Eo =    2.01V             (2) 

 

                2SO3    2SO2  + O2                                                            (3) 

 

Therefore, the reaction of the equation (1) proceeds in the reverse direction due to 

reactions of the equations. (2) and (3). By comparing the standard reduction potentials, it 

is clear that the standard potential of S2O8
2-/SO4

2- is much higher (2.01 V) than that of 

Bi3+/Bio (0.31 V) species (Vanýsek 1994). Therefore, it easily favors the backward 

reactions of the equation (1) which results in controlled formation of Bio nanoparticles 

(NPs) and increases the transparency of the glasses. The UV-visible absorption spectra in 

figure 1 show a surface plasmon resonance (SPR) band at 460 nm in the presence of 

strong oxidizing agent (K2S2O8) due to the existence of bismuth nanoparticles. Such 

prominent SPR band is not appeared in the bismuth glass which does not contained 

K2S2O8 due to presence of comparably massive amount of bigger size bismuth particles. 

In this study, the intention of using strong oxidizing agent is to control the formation of 

Bi0 NPs and therefore, the transparency of the bismuth glass dielectric enhances to a great 

extent. 

The electron beam irradiation during the TEM experiment at an accelerating 

voltage of 300 kV performed on the bismuth glass dielectrics containing 0.5 wt % 

K2S2O8 at various time intervals and the resultant images are shown in the figure 2. The 
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TEM images at the initial stage (0 min) of electron beam (EB) irradiation in figure 2 (a) 

clearly reveal the homogeneously dispersed and densely embedded very small Bio NPs 

and their size range 1-2 nm. This controlled size of bismuth NPs are achieved due to the 

addition of strong oxidizing agent K2S2O8 in the bismuth glass. Its selected-area electron 

diffraction (SAED) pattern is shown in figure 3 (a) which has not revealed any distinct 

spots due to the very small particle size (1-2 nm). But, at 2 min of EB irradiation, the 

sample shows prominent Bi NPs growth with the size range 4-5 nm. Here, the overall 

shape of the sample is also changed to about oblate by contraction and densification. The 

TEM image observed at 4 min of EB irradiation show comparable bigger particle size (5-

9 nm) and overall shape became spherical, which is demonstrated in the figure 2 (c). Its 

SAED depicts the clear patterns of <410> hkl plane of rhombohedral metallic Bi 

nanoparticles, which have been identified from the d-spacing (JCPDS File Card No.: 05-

0519). When the time of irradiation increases to 8 min the particle size increases to 8-11 

nm as shown in figure 2 (d). Its electron diffraction pattern revealed the <104> and 

<101> hkl crystalline planes of rhombohedral Bi NPs (JCPDS File Card No.: 05-0519) 

which is shown in figure 3 (c). Some SAED patterns in the images are not well defined; 

hence these could not be identified. A representative high resolution transmission 

electron microscopy (HRTEM) image of 8 min of EB irradiation is shown in figure 3 (d) 

which shows the characteristic lattice fringes measured to be 0.234 nm corresponds to the 

<104> hkl planes of the rhombohedral bismuth [space group: R3m(166)] with lattice 

constants a = 4.546 Å and c = 11.86Å (JCPDS File Card No.: 05-0519).  

The TEM images for the sample following electron beam irradiation for 8 min 

reveals the density of Bi particles in the sample is higher than that in the samples with 
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shorter time of irradiation. The average particle size increases with the EB irradiation 

time and this phenomenon is shown in the figure 4 which reveals that the average particle 

size gradually increases up to 11 nm for an EB irradiation time of 8 nm. This result 

suggests the possible control of the size and the density of the Bi nanoparticles in bismuth 

glass by varying the irradiation time of electron beam. The SAED patterns clearly show 

diffraction spots corresponding to the Bi crystal randomly distributed in plane with 

increase in irradiation time. Kim et al. 2007 and Sepulveda-Guzman et al. 2007 have also 

found the similar findings for the formation of bismuth nanoparticles trough electron 

beam irradiation in TEM. Sepulveda-Guzman et al. 2007 demonstrated that once the 

smallest bismuth nanoparticles is formed, then these nanoparticles acted as seeds and 

grew into crystals. Some of the nanoparticles were competent to grow into large crystals 

by the Ostwald ripening process. In the initial stage of electron beam irradiation, the 

bismuth nanoparticles were too small and exhibited a rapid movement. When the particle 

size increases, the movement became slow down and became more stable under the 

electron beam observation. In this study, we have also observed the similar phenomena 

which facilitated to observe the HRTEM image for the bigger particle (EB irradiated for 

8 min) than that of smaller size due to its comparable more stability. Here, the crystal 

structure of the particles could not clearly define when they were very small. But, with 

the assistance of the TEM electron beam irradiation, the smaller particles as shown in 

figure 2 (a) seem to merge with each other to make bigger particles, showing a smoother 

surface (figure 2 (b-d)). These results show that Bi NPs randomly dispersed and gathered 

in the glass matrix to nucleate assisted by the electron beam irradiation energy. Bismuth 
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has a low melting temperature (2710C) and this contributes to such energy induced 

structural change phenomena during in situ TEM observations.  

Latheam at el. 2008 have demonstrated the TEM induced changes to the 

morphology of amorphous Fe, Co, and Ni metal oxides nanoparticles. In this study they 

observed that the nanoparticles are transforming from initial solid spheres to core, void or 

shell structures and finally to hollow nanoparticles. Oshima et al. 1997 have found very 

interesting structural anomaly of bismuth particle at a critical size of 8.4 nm. The bismuth 

particles smaller than the 8.4 nm revealed the rhombic structure, whereas the particle size 

increases above the critical size it transformed to cubic structure. But in our study, we 

have found only rhombohedral structure of bismuth for the various particle sizes. 

Some previous studies done by various researchers in this field have revealed that 

the growth and morphology of the bismuth NPs carried out through electron beam 

irradiation depend on various parameters such as EB irradiation dose and time duration, 

temperature and particle size. Derrouiche et al. 2010 have demonstrated how morphology 

of bismuth nanoparticles is changes with respect to electron beam irradiation. The 

increase in the size of the particles arises due to coalesce of two or more particles. If r1, 

r2, r3, …….., ri are the radii of particle p1, p2, p3, ……, pi, then under the electron beam, 

p1 moves across the surface and join particle p2, it gives unique particle of radius R which 

can be expressed as:  

 

                  R = [Σ ri
3]1/3                                                                (4) 
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The process of formation, growth and then coalesce of bismuth nanoparticles is an 

irreversible process.  

 Meldrum et al. 2000 have show how the effects of ion irradiation can be used to 

good advantage in the formation of novel nanocrystal microstructures and nanocrystal-

host structural relationships and its nanolithography application.  Their results were 

somewhat amazing that the amorphous material crystallized to form a nanometer-scale 

polycrystalline assemblage of ScPO4 within a matter of seconds depending on the beam-

current density. This crystallization process could be controlled by focusing the electron 

beam and moving the focal point with the beam shift controls through TEM. In this 

method, letters and patterns of nanocrystals could be drawn easily in the amorphous host 

matrix. Therefore, our study based on electron beam irradiation on the bismuth glass 

dielectric which is technologically very important material could also be useful for the 

nanolithography as well as nanopaterning for integrated nanooptics applications due to 

the rapid formation (within the a minute) of bismuth nanocrystal in the bismuth glass 

dielectric it self. 

 

Conclusion 

 
This study revealed a simple but very effective methodology to control the synthesis of 

the Bi nanoparticles in bismuth glass dielectrics using electron beam irradiation in TEM. 

The bismuth nanoparticles size increases with the electron beam irradiation time. This 

type of electron beam irradiation induced change in morphology is attributed to the low 

melting temperature of bismuth metal. The well-defined Bi nanoparticles show the 

rhombohedral structure which is common in bulk bismuth. This work is very important 
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for nanolithography and nanopaterning in optoelectronics applications due to rapid 

formation of bismuth nanocrystal in bismuth glass dielectrics. 
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Figure Captions 

Fig. 1 Absorption spectra of (a) without and (b) with 0.5 wt % K2S2O8 in the glasses 

 

Fig. 2 TEM images of the bismuth nanoparticles in bismuth glass at (a) 0, (b) 2, (c) 4 and 

(d) 8 min time interval of electron beam irradiation 

 

Fig. 3 Selected area electron diffraction (SAED) images of the bismuth nanoparticles in 

bismuth glass during various time interval of electron beam irradiation at (a) 0, (b) 4 and 

(c) 8 min, and (d) high resolution transmission electron microscopy (HRTEM) at 8 

minute 

 

Fig. 4 Average bismuth nanoparticle size (nm) as a function of time (min) of electron 

beam irradiation 
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Fig. 1 Absorption spectra of (a) without and (b) with 0.5 wt % K2S2O8 in the glasses 
 
 
 

  

  

Fig. 2 TEM images of the bismuth nanoparticles in bismuth glass at (a) 0, (b) 2, (c) 4 and 
(d) 8 min time interval of electron beam irradiation 
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Fig. 3 Selected area electron diffraction (SAED) images of the bismuth nanoparticles in 
bismuth glass during various time interval of electron beam irradiation at (a) 0, (b) 4 and 
(c) 8 min, and (d) high resolution transmission electron microscopy (HRTEM) at 8 
minute 
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Fig. 4 Average bismuth nanoparticle size (nm) as a function of time (min) of electron 
beam irradiation 
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