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Abstract 
 

Synthesis of a new series of lead free low softening point (<470oC) high Bi2O3 

(40-90 mol %) glasses in the K2O-B2O3-Bi2O3 system by the melt-quench technique has 

been demonstrated here. Their structural, optical, thermal, electrical and other physical 

properties have been evaluated by X-ray diffraction (XRD), transmission electron 

microscopy (TEM), field emission scanning electron microscopy (FESEM), Fourier 

transformation infrared reflection spectroscopy (FTIRR), UV-Visible spectroscopy, 

dilatometer, LCR meter, etc. techniques. The glass softening point, glass transition 

temperature and glass deformation temperature are found to vary in the ranges 410-

465oC, 354-409oC and 376-427oC respectively which are found to correlate well with the 

boron anomaly phenomenon (as revealed by FT-infrared reflection spectroscopy) with 

gradual addition of Bi2O3 in the glass matrix. The coefficient of thermal expansion shows 

a decreasing trend from 153 down to 109 x 10-7 K-1 whereas the dielectric constant 

increases from 21 to 34 with the increase in Bi2O3 content. The theoretical optical 

basicity is found to increase from 0.93 to 1.15 while the optical band gap decreases from 

2.86 down to 2.30 eV with the addition of Bi2O3. The formation of metallic bismuth in 

these glasses during melting in air has been confirmed by the X-ray diffraction, 

transmission electron microscopy, selected area electron diffraction (SAED) and high 

resolution transmission electron microscopy (HRTEM) analyses. The formation of Bi2O3 

rich secondary phase in the glasses and their particle size distribution has been examined 

by the field emission scanning electron microscopy photomicrograph analysis. 
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1. Introduction 
 

Recently, glasses containing bismuth have attained great attention, since they are 

used in the wide area of applications. The obtained glasses are characterized by high 

density, high refractive index and high dielectric constant properties. Hence there has 

been an increasing interest in the synthesis, microstructure and physical properties of 

heavy metal oxide (HMO) glasses containing bismuth as a major component. Bismuth 

oxide (Bi2O3) based glasses for their high polarizability has fascinated much attention of 

glass researchers because of their nonlinear optical properties which have importance for 

the development of optical information processing technology [1-3]. For this purpose, 

glasses of higher optical nonlinearity have to be found or designed on the basis of 

correlation of the optical nonlinearity with some other electronic properties which are 

easily understandable and accessible. Therefore, many studies on their structure and 

optical properties have been carried out. It has been found that glasses containing a large 

amount of Bi2O3 possess a wide range of infrared transparency [4-6]. Lead oxide is 

widely used as a component in the low melting glasses. But due to its hazardous effect on 

health and environment, it is being eliminated from various applications [7, 8]. In this 

context, bismuth oxide is a suitable substitute of lead oxide for its isoelectronic 

properties. Therefore, bismuth glasses are very useful for exploiting as lead-free high 

density radiation shielding window (RSW) glasses, as lead-free low-softening point 

dielectric glasses for plasma display panel, thick film conductors, sealing glasses for 

metals, etc. [7,8]. 

 In addition to these, bismuth oxide glasses are very stable hosts for obtaining 

efficient luminescence in rare-earth ions. Recently, bismuth oxide glasses have attracted 
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much attention because of their low phonon energy. The quantum efficiency of emission 

from a given level strongly depends on the phonon energy of the host medium, it can be 

predicted that the nonradiative loss to the lattice vibration will be small and the 

fluorescence quantum efficiency will be high in bismuth oxide glasses. All these 

applications indicate the need of a basic understanding of the relationship among the 

electronic polarizability, optical basicity and optical properties of the bismuth oxide 

glasses.  

 Bismuth oxide cannot be considered as a glass network former due to small field 

strength (0.53) of Bi3+ ion. However, in combination with B2O3 glass former it is possible 

to obtain glasses in a relatively large compositional range. A survey of literature shows 

that there are many reports available on ternary bismuth borate glasses [9-14]. Saddeek 

[15] has reported about Li2O-Bi2O3-B2O3 glass system. In this paper, we demonstrate the 

physical, structural, optical, thermal and electrical properties of a new series of glasses of 

high Bi2O3 content (40-90 mol %) in the K2O-B2O3-Bi2O3 system.  

 
2. Experimental Procedure 
 

Bismuth trioxide, Bi2O3 (99%, Loba Chemie), boric acid, H3BO3 (99.5%, Loba 

Chemie) and potassium carbonate, K2CO3 (99.9%, Loba Chemie) were used as raw 

materials to prepare the glasses. The glass batch for 25 g glass of composition (100-x)( 

K2O-B2O3)-xBi2O3 (mol %) (where x = 10, 20. 30, 40, 50, 60, 70, 80 and 90) was melted 

at 1100oC in air for 30 min with intermittent stirring for 0.5 min in a 25 ml high purity 

silica crucible in an electrical furnace. The molten glass was cast into a carbon plate and 

annealed at 320oC for 2h to release the internal stresses.  
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 The softening point (Ts) of the samples was measured by a glass softening point 

system (Harrop/Labino, Model SP-3A) with an accuracy of +1oC. The instrument was 

previously calibrated with a NBS (National Bureau of Standards, USA) standard glass of 

known softening point. The coefficient of thermal expansion (CTE), glass transition 

temperature (Tg) and glass deformation temperature (Td) of the cylindrical shaped glasses 

were measured with an accuracy of +0.2% using a horizontal-loading dilatometer 

(Netzsch, Model DIL 402 PC) after calibration with a standard alumina supplied with the 

instrument by the manufacturer. The coefficient of thermal expansion in the temperature 

range 50-300oC is reported here. The dielectric constant was measured with an accuracy 

of +0.5% at a frequency of 1MHz using a LCR meter (Hioki, Model 3532-50 LCR 

Hitester) at 25oC. The instrument was calibrated previously by a Suprasil-W silica glass 

( = 3.8). X-ray diffraction data of powder samples were recorded using an XPERTPRO 

diffractometer (PANalytical) with 2 varying from 10o to 80o using Ni filtered CuK ( 

= 1.5406 Å) at 25oC, generator power of 45 KV and 35 mA. Fourier transformation 

infrared reflection (FTIRR) spectra of polished glasses were recorded a by Perkin-Elmer 

Fourier transformation infrared reflection spectrometer (Model 1600) at a resolution of + 

2 cm-1 after 16 scans. The transmission electron microscopy (TEM) and selected area 

electron diffraction (SAED) images were taken using a FEI instrument (Tehnai-30, ST 

G2) operating at an accelerating voltage of 200 kV. Field emission scanning electron 

microscopy (FESEM) photomicrographs were recorded with a Gemini Zeiss Supra™ 

35VP Model (Carl Zeiss) instrument using an accelerating voltage of 4.9 kV. The sample 

was prepared for field emission scanning electron microscopy experiment by etching in 2 

wt% of HF solution for 1 minute. The UV-Vis absorption spectra in the range of 300-
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1100 nm were recorded using 2mm thickness of sample with a double beam UV-visible 

spectrophotometer (Lambda 20, Perkin-Elmer) at an error of +0.1 nm. 

 

3. Results 

3.1. Physical parameters 

The samples containing 10, 20 and 30 mol% of Bi2O3 were not stable enough due 

to absorption of moisture from the environment, so characterizations of these samples 

were not possible. The other samples were prepared by cutting, grinding and polishing 

for various characterization measurements in various shapes. The glasses are labeled as 

KBB4, KBB5, KBB6, KBB7, KBB8 and KBB9 for x = 40, 50, 60, 70, 80 and 90 mol % 

of Bi2O3 content respectively. 

 The densities () of the glass samples were determined by the standard 

Archimedes principle. The measurements were done using single pan balance and 

distilled water as an immersion liquid. The density was obtained from the relation. 

                         = ax / (a-b)                                                         (1) 

where a is the weight of the glass sample in air, b is the weight of the glass sample when 

suspended in distilled water (density of water, x = 1g. cm-3
). 

  The molar volume (Vm) of the glass samples was calculated using the molecular 

weight (M) and density () of the glasses with the following relation and these values are 

also included in Table 1. 

                                      Vm = M/                                                      (2) 
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 The variation of density with the composition of Bi2O3 is shown in Table 1. It is 

evident from Table 1 that the density and molar volume of the glasses increase with 

increase in Bi2O3 content.  

 The refractive index (n) and Young’s modulus were predicted using SciGlass 

(Glass Properties Information System, Version 6.7) software and these values are also 

listed in Table 1. Both these properties are found to increase with the increase in Bi2O3 

content. 

 

3.2. Optical transmission and absorption 

Fig. 1 (a) shows the optical transmission spectrum of some glasses of the KBB 

system. The transmission of the glasses decreases with increase of Bi2O3 content. Figure 

1 (b) shows the optical absorption bands of the glasses. Their surface plasmon resonance 

(SPR) absorption bands are also shown in the inset of Fig. 1 (b). The absorption 

coefficient,  near the edge of each curve was determined by using the following relation 

[16]  

                             = 2.303A/ t                                                       (3) 

where A is absorbance and t is thickness of each sample. The relation between   and 

photon energy of the incident radiation, h is given by the following equation [12]. 

                            = B (h - Eopt)2/ h                                           (4) 

where B is the constant and Eopt is the energy of the optical band gap. The relation (4) can 

be written as  

                          (h)1/2 = B(h - Eopt)                                          (5) 
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Using the relation (5) the optical band gap values were determined by the extrapolation of 

the linear region of the plots of (h) 1/2 against h. The values of Eopt thus obtained for 

all the glasses are given in the Table 1 and also shown in Fig. 2. 

 

3.3. Theoretical optical basicity  

The theoretical optical basicity (th) for the glass system under study has been 

calculated using the following relation [15-17]. 

 th = X(K2O) (K2O) + X(Bi2O3) (Bi2O3) + X(B2O3) (B2O3)                (6) 

where X(K2O), X(Bi2O3) and X(B2O3) are the equivalent fraction of the different oxides, 

i.e. the proportion of the oxide atom that contributes to the glass system; (K2O), 

(Bi2O3) and (B2O3) are the optical basicity values of the constituent oxides. Here the 

values of (K2O) = 1.4, (Bi2O3) = 1.19, (B2O3) = 0.425 have been taken from the 

literature [18]. The calculated values of th are presented in Table 1. 

 

3.4. X-ray diffraction (XRD) pattern 

Figure 3 shows the X-ray diffraction patterns of characteristic crystalline phases 

in KBB5 and KBB9 glass samples.  The XRD peaks are not well resolved and are depict 

at 2θ = 12.49o, 27.53o and 28.50o. 

 

3.5. Transmission electron microscopy (TEM) 

The TEM images of the KBB5 and KBB9 glasses are shown in Figs. 4 and 5 

respectively. The average particle size of KBB5 glass is about 5 nm whereas that of 

KBB9 glass ranges 5 – 17 nm. Their respective selected area electron diffraction (SAED) 
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patterns show incipient crystalline behavior of the glasses. KBB5 shows <024> hkl plane 

and KBB9 depicts <024> and <208> diffraction hkl planes of rombohedral metallic 

bismuth (JCPDS File Card No.: 85-1329). The high resolution transmission electron 

microscopy (HRTEM) of KBB9 glass reveals <015> hkl planes of rombohedral metallic 

bismuth which has been identified from the d-spacing as provided in the JCPDS File 

Card No.: 85-1329. The TEM images of KBB9 glass show the presence of spherical as 

well as elongated particles in the glasses.       

 

3.6. Field emission scanning electron microscopy (FESEM) micrograph 

Figures 6 (a) and (c) show the FESEM micrographs of phase separation in glass 

samples KBB5 and KBB9 respectively. The FESEM image of KBB9 reveals the 

relatively dense and bigger size particles in comparison to KBB5 glass sample. The 

distribution of different size of phase separated particles is shown in the form of 

histograms with the respective micrographs in Fig. 6 (b) and (d) respectively. The KBB9 

shows wide range of particle size ranges from 30 to 210 nm whereas the sample of KBB5 

glass shows the particles of sizes ranges from 30 to 170 nm. The median size of particles 

is 80 nm for KBB5 where as it is 90 nm for KBB9. So it is seen that the median particle 

size and number of particles per unit area increase with the increase in Bi2O3 content. The 

number density of particles per unit area has been calculated for the both samples and 

found to be 12,985 and 13,149 particles/μm2 for KBB5 and KBB9 glasses respectively. 
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3.7. FTIRR spectra 

The infrared reflection spectra recorded for all the glass samples are shown in the 

Fig. 7 (a). The glass samples show bands at 451, 882, 1180 and 1265 cm-1. A shoulder at 

around 707 cm-1 is also observed in the glasses. The reflection intensity ratio of BO4 to 

BO3 structural units is also demonstrated in the Fig. 7 (b).  The values of the ratio of the 

two structural units of borate is gradually going down to 60 mol % of Bi2O3 content 

(KBB6) and then going up to 90 mol % of Bi2O3 content (KBB9) glasses. This 

observation reveals the boron anomaly phenomenon in these glasses. 

 
 
3.8. Coefficient of thermal expansion (CTE) 
 

The thermal expansion is a very important thermal property of glass. Fig. 8 (a) 

shows the linear thermal expansion of the KBB4, KBB7 and KBB9 glasses as a function 

of temperature. The variation coefficient of thermal expansion (CTE) of the glasses 

measured from 50 to 300oC temperature range is shown in the Fig. 8 (b) as a function of 

Bi2O3 content. The CTE values vary from 153 to 109 x 10-7 K-1. The CTE gradually 

decreases as Bi2O3 content increases form 40 to 90 mol%. However, these values deviate 

from the linearity in Bi2O3 content. 

 

3.9. Softening point, glass transition temperature and deformation temperature  
 

The softening point (Ts), glass transition (Tg) and deformation temperature (Td) 

are shown in the Fig. 9. The values of these properties gradually going down as the Bi2O3 

content increases from 40 to 60 mol% and further going up with Bi2O3 content increases 
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from 70 to 90 mol%. The (Ts), (Tg) and (Td) are shown the lowest values at 60 mol% of 

Bi2O3 content i. e. in glass KBB6. 

 

3.10. Dielectric constant 

Dielectric constant () of the glasses have been calculated by using the following 

formula [19] 

                                 = cd/(0.0885 A)                                                    (7) 

where c, d and A are capacitance in pico Farad (pF), thickness of glass (in cm) and area of 

the dielectric (in cm2) respectively.  

It is seen that the dielectric constant of the glasses gradually increases with 

increase in Bi2O3 content which is shown in the Fig. 10. Dielectric constant () is 

associated with polarizability (p) and refractive index (n) by the following Lorentz- 

Lorenz (Eq. 8) and Maxwell equations (Eq. 9) [20]. 

p = 3Mav (n2 – 1)/4(n2 + 2)NA                                   (8) 

 = n2                                                                              (9)  

where NA is the Avogadro’s number, and Mav and  are average molecular weight and 

density of the glass respectively.  

 

4. Discussion 

In this study of K2O-B2O3-Bi2O3 ternary glass system, the replacement of Bi2O3 

instead of B2O3 and K2O increases the density. This is attributed to the replacement of 

low density oxides (B2O3 and K2O) by high density oxide (Bi2O3) as shown in Table 1. 

The molar volume (Vm) of the glasses increases due to increase in bond length or inter 
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atomic spacing. It has happened due to higher ionic radius of Bi3+ (0.102 nm) than that of 

B3+ (0.020 nm). Therefore, one can understand that Vm as the volume corresponding 

structural unit with its surrounding space will increase by insertion of HMO like bismuth 

oxide. 

 The optical band gap (Eopt) of the samples decrease to lower energies with 

increase in Bi2O3 content. It is related to the progressive increase in the covalent Bi-O of 

bond strength of 81.9 kcal mol-1 [13]. This increased Bi2O3 content gives rise to possible 

decrease in the B-O-B bridging oxygen of borate structural unit.  Here it is believed that 

as the cation concentration increases which developed the bridging oxygen bonds with 

Bi3+ ion and lead to the gradual breakdown of the glass network. This incident seems to 

account for the decrease in the Eopt value, which results in the shifting of edge to longer 

wavelength with increase in Bi2O3 content from 40 to 90 mol %. Such a decrease in the 

values of optical band gap energy can thus be attributed to decrease in the phonon-

assistant indirect transitions.  

 It is observed from the Table 1 that the theoretical optical basicity (th) values 

increases with increase in Bi2O3 content. This may be understood according to Eq. (6).  It 

is well known that Bi3+ ions are highly polarizable ion [21], so the polarizability of the 

glasses is increases with the increase in Bi2O3 content. Therefore, it can be concluded that 

the basicity increases with the increase in the polarizability as Bi2O3 content gradually 

increases.  

 The XRD patterns show the peaks for the 012, 116 and 122 Miller planes of the 

rhombohedral metallic bismuth phase (JCPDS file no. 01-0699) in the Fig. 3. The 

bismuth glasses are dark brown or black colored when at high melting temperature and 



 12 

contain high Bi2O3. Sanz et al. [9] and Zhang et al. [10] have found these crystalline 

peaks for metallic bismuth in deep brown colored bismuth glasses which are reduced 

during melting process. The reduction reaction can be represented by 

 

                          Bi2O3          2Bio + 3/2 O2                                                   (10) 

 

 The above result also confirmed from the TEM images of KBB5 and KBB9 

glasses (Figs. 4 and 5 respectively). It clearly reveals that the KBB9 glass has 

homogeneously dispersed Bio nanoparticles (NPs) of spherical shape with bigger size 

than that of KBB5 glass. This observation also confirm from the SAED pattern of KBB9 

glass which shows the more distinct spots than that of KBB5 glass due to its bigger 

particle size. The KBB9 glass also depicts the lattice fringes of metallic bismuth in 

HRTEM which is not found in KBB5 glass due to its small size. This formation of more 

and bigger particle in KBB9 glass is also supported by the optical transmission spectra 

(Fig. 1 (a)). The gradual decrease in transmittance from KBB5 to KBB9 glasses along the 

visible spectrum is due to the existence of more metallic bismuth particles dispersed in 

the KBB9 glass.  

 The UV-Vis absorption spectra of bismuth glasses in Fig. 1 (b) show the 

absorption bands of the surface plasmon resonance (SPR) of Bio nanoparticles (NPs). 

Khonthon et al.[4] has reported the SPR band of Bio NPs at 460 nm, which are 

comparable to our results. The absorption bands shift towards higher wavelength with the 

increase in Bi2O3 content. The SPR of a metal particle gives an absorbance band centered 

at a wavelength, λ, which can be expressed by the relation: [22] 
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                     λ2 = (2πc)2εo mo (ε∞ + 2n2) / Ne2                                          (11)  

 

where the velocity of light is c, mo is the particle mass, N is the particle concentration, the 

charge of the electron is e, ε∞ is the optical dielectric function of the metal, n is the 

refractive index of the host material and εo is the free-space permeability. From the Eq. 

11, it is clear that the position and shape of the SPR is determined by the metal dielectric 

function, as well as on the size and shape of the particles, refractive index of the host 

materials and concentration of particles. The SPR band of Bio NPs in the host water 

(refractive index, n = 1.33) was observed around 400 nm [23] whereas here the glasses 

having higher refractive index (2.02 – 2.43) show a red shift towards higher wavelength 

of the band. The two spectrally separated absorption bands of glasses (Fig. 1 (b)) indicate 

that the two groups of size (small and large) and shape (elongated) of particles are present 

in the glasses.  These findings can be correlated well with the TEM images (Figs. 4 and 

5) where both small and big size particles are present. Fig. 5 shows the presence of some 

spherical as well as elongated shaped particles in the glass. The spherical particles 

generate a single SPR band, which is located in the visible range, whereas elongated 

particles give rise to two spectrally separated SPR bands corresponding to transverse and 

longitudinal electron oscillations with respect to major axis [24].  

Fig. 6 shows the FESEM micrograph of KBB5 and KBB9 glasses. These 

micrographs indicate the phase separation in the glass. Scholze [20] has explained this 

type of phase separation is a very common phenomenon in the glass because during 

melting process all components are in liquid phase. During quenching any of the 
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components get supersaturation state and form a separated secondary phase. Porai-

Koshits et al. [25], W. Vogel et al. [26], James et al. [27] and MacDowell et al. [28] have 

worked on the phase separation in various glasses. Porai-Koshits et al. [25] have report 

about such fine structure of sodium silicate glasses arises due to the secondary phase 

separation from a primary separated phase take place as a result of over saturation under 

the lowering of temperature during the process of quenching. W. Vogel et al. [26] has 

done electron microscopical studies of phase separated glasses. MacDowell et al. [28] has 

observed metastable glass in glass separation on rapid quenching of Al2O3-SiO2 glass 

melt. Here in this study, Fig. 6 depicts the secondary phase in the K2O-Bi2O3-B2O3 glass 

system. During etching process by HF solution at the time of sample preparation for the 

FESEM experiment the B2O3 and K2O were rapidly dissolved. Therefore the observed 

micro images are due to Bi2O3 rich phase. This can also be concluded from the evidence 

of increasing the number of particles in the observed micrograph images with the Bi2O3 

content.  

 Bi2O3 containing glasses have fundamental vibrations in the IR spectral regions at 

around 480, 715 and 880 cm-1 [29, 30]. Boron also has three vibrational bands at 1200-

1600, 800-1200 and 700 cm-1 [29-34]. The boron-oxygen network can be in the form of 

planar BO3 or tetrahedral BO4. The Fig. 7 (a) shows reflection bands at 451 cm-1, specific 

to the vibrations of Bi–O bonds in BiO6 octahedral units [29, 30]. The absorption band at 

707 cm-1 has been assigned to symmetric stretching vibrations of Bi–O bonds in BiO3 

pyramidal units [29, 30]. The band at 882 cm-1 is due to stretching vibration of the B–O 

bonds in tetrahedral BO4 unit and the broad band at 1180 and 1265 cm-1 is attributed to 

the B–O bond stretching in the planar BO3 unit in the borate network [29-34]. This 
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bifurcation is due to the bridging of BO3 with K-O and Bi-O units. This bifurcation 

gradually weakens with the increase in the content of Bi2O3 which indicates the major 

bridging of BO3 unit with the Bi-O. From Fig. 7 (a), it seen that the Bi2O3 act as modifier 

at lower concentration and modify the glass structure by breaking the B-O bond and form 

the Bi-O of the BiO3 unit which exhibited the band at 707 cm-1.  But at higher 

concentration of Bi2O3, it acts as a glass former and form Bi-O of BiO6 octahedral units. 

Fig. 7 (b) shows the variation of BO4 and BO3 structural units of borate which indicates 

the tetrahedral BO4 decreases upto KBB6 and further increases at higher concentration of 

Bi2O3.  Scholze [20] has explained this anomaly property of boron due to shifting of 

coordination number (CN) from BO4 (CN = 4) to BO3 (CN = 3) and again to BO4 

structural units. The planar structure of BO3 group weakens the glass network whereas 

tetrahedral BO4 unit strengthen the network. Duffy [17] has also reported the major 

structural changes in certain properties due to boric oxide anomaly.   

 The thermal expansion of glasses is controlled by the asymmetry of the amplitude 

of thermal vibrations in the glass. It decreases as the rigidity of the glass network 

increases [35]. An increase of the number of non-bridging bonds weakens the structure 

which is turn increases the coefficient of thermal expansion, whereas the change in 

coordination number of network former cation may cause either its increase or decrease 

depending on the effect on glass structure. In this study, coefficient of thermal expansion 

gradually decreases with the increase in the Bi2O3 content in the glasses which is shown 

in the Fig. 8 (a). Here the Bi3+ substituting B3+ form the BiO6 octahedral units with 

coordination number six. Therefore, the coordination number of cation has changed from 

4 or 3 (BO4 or BO3 structural unit) to 6 (BiO6 structural unit). The anomaly tendency of 
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the thermal expansion shown by dotted line in Fig. 8 (b). This could also be well 

correlated with the ratio of BO4 to BO3 structural unit formation (see Fig. 7 (b)).  

Fig. 9 shows softening point (Ts), glass transition temperature (Tg) and glass 

deformation temperature (Td) decreases from 40 to 60 mol% and subsequently increase 

with higher concentration of Bi2O3. The Bi2O3 act as a glass network modifier at low 

concentration where as it form network by itself at high concentration [13]. The decrease 

in the values of above properties is due to the increase in number of non-bridging 

oxygens (NBOs) atoms with the increasing concentration of Bi2O3. Addition of lower 

concentration of Bi2O3 as a third component into the binary potassium borate glasses 

results in splitting of K-O-K and B-O-B bonds and hence the bridging oxygens (BOs) are 

converted into NBOs. Further addition of Bi2O3 into glass opens up the glass network. 

This results in weakening of the glass network. Hence the softening point, glass transition 

temperature and glass deformation temperature decrease up to 60 mol % of Bi2O3 content 

as shown in the Fig. 9. It is obvious that the decreases in the above values are due to 

increase in the number of Bi-O which are weaker than B-O linkages. It may be noted that 

the bond strength of Bi-O is 81.9 kcal mol-1 which is less than that of B-O (192.7 kcal 

mol-1) [13]. But the values of Ts, Tg and Td further increases at higher concentration (70 

to 90 mol %). Here it can be noted that at higher concentration, Bi2O3 acts as a glass 

network former by reshuffling the glass network.  It form Bi-O bond of BiO6 octahedral 

unit and again rebuild the structure by Bi-O-Bi, hence the rigidity of the glasses 

increases. Therefore, the values of above properties increase at higher concentration of 

Bi2O3. These phenomena correlate well with the ratio of IBO4/IBO3 as shown in Fig. 7 (b) 

which shows the boron anomaly property in these glasses as well.      
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 The dielectric constant is directly correlated with the polarizability of the samples. 

The dielectric constant gradually increases with the increase in the Bi2O3 content in the 

glasses which is shown in the Fig. 10. It has already been reported that Bi3+ ions are 

highly polarizable (above 3 A˚3) due to their large ionic radii and small cation unit field 

strength [13, 21]. The observation made from Table 1 is that the refractive index also 

increases with the increase of bismuth oxide content. Eqs. 9 and 10 also disclose the 

increasing trend of dielectric constant with increase in Bi2O3 content.  This is due to the 

high ionic refraction of Bi3+ ion (30.5) [36]. 

 

5. Conclusions 

The effect of the Bi2O3 content on the properties of the glasses in the K2O- B2O3- 

Bi2O3 system has been investigated here. The densities and molar volume of the glasses 

increase due to the incorporation of Bi2O3. The transmission and optical band gap energy 

going down as bismuth oxide content increases. The SPR bands, XRD patterns, TEM 

images and SAED confirm the formation of nanometal of bismuth during melting. They 

also reveal that the metallic bismuth particle size gradually increases at higher Bi2O3 in 

the glass composition. The TEM images revealed that the particles are present in the 

glasses are both in small and big sizes having spherical as well as elongated shape. This 

is also supported by SPR absorption bands which show two spectrally separated bands. 

The FESEM microstructure of the glasses shows the bismuth oxide rich secondary phase 

separation in the glass. Addition of Bi2O3 in the glass facilitates the formation of BiO6 

octahedral unit by replacing B-O bond. The glasses exhibit the boron anomaly 

phenomena. The decrease in the values of glass softening temperature, glass transition 
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temperature and glass deformation temperatures from 40 to 60 mol % of Bi2O3 indicates 

that the glass network becomes less tightly packed due to formation of nonbridging 

oxygen. But these values are further increased with Bi2O3; this reveals the role of Bi2O3 

as a glass network former at its higher concentration. These results correlate well with the 

FTIRRS reflection intensity ratio of the BO4 to BO3 structural units. The basicity and 

polarization of the samples have increased with the bismuth oxide content which causes 

the increase in dielectric constant. This rise in the dielectric constant is also correlated 

well with the increase in refractive index of the glasses. We believe that this work will 

create new prospect in the area of lead-free low-softening point glasses. 
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Figure captions 

Fig. 1. (a) Transmission and (b) absorbance spectra of (1) KBB4, (2) KBB5, (3) KBB6 

and (4) KBB9 glasses. Their surface plasmon resonance (SPR) absorption bands are 

shown in inset of (b). 

Fig. 2. Plot of (αhν)1/2 as a function of photon energy (hν) for KBB4, KBB5, KBB6, 

KBB7, KBB8 and KBB9 glasses.  

Fig. 3. XRD patterns of (a) KBB5 and (b) KBB9 glasses. 

Fig. 4. TEM image and SAED pattern of KBB5 glass.  

Fig. 5. TEM images of KBB9 glass (a) and (b). Its HRTEM and SAED pattern are in (c) 

and (d) respectively.  

Fig. 6. (Color online) FESEM micrographs of (a) KBB5 and (c) KBB9 glasses show the 

effect of Bi2O3 content on the phase separated particle size distribution which is plotted in 

(b) and (d) respectively (where R is the correlation coefficient). 

Fig. 7. (a) FTIRR spectra of (1) KBB4, (2) KBB5 (3) KBB6, (4) KBB7, (5) KBB8 and 

(6) KBB9 glasses and (b) variation of reflection intensity ratio of BO4 to BO3 structural 

units of the glasses as a function of Bi2O3 content. 

Fig. 8. (a) Linear thermal expansion of (1) KBB4, (2) KBB7 and (3) KBB9 glasses as a 

function of temperature. Their Tg and Td values are also shown and (b) variation of 

coefficient of thermal expansion (CTE) of the glasses as a function of Bi2O3 content. 

Fig. 9. Variation of softening temperature (Ts), glass transition temperature (Tg) and 

deformation temperature (Td) of the glasses as a function of Bi2O3 content. 

Fig. 10. Variation of dielectric constant of the glasses as a function of Bi2O3 content.  
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Table 1 
 Some experimental and calculated properties of the glasses in the K2O-B2O3-Bi2O3 system 
 

 

 

 
 

 

 

 

 

 

 
Property 
 
 

 
KBB4 
 

 
KBB5 
 
 

 
KBB6 
 
 

 
KBB7 
 
 

 
KBB8 
 
 

 
KBB9 
 
 

Density,  (g. cm-3) (+ 0.01) 5.076 5.625 
 

6.133 
 

6.496 
 

6.723 
 

6.946 
 

Optical band gap energy, Eopt (eV) 
(+0.1) 

2.86 2.78 
 

2.69 
 

2.59 
 

2.50 
 

2.30 
 

Average molecular weight, Mav  235.53 273.93 
 

312.34 350.74 389.15 427.55 
 

Molar volume, Vm (cm3) (+0.01) 46.40 48.70 50.93 53.33 58.98 61.55 
 

Theoretical optical basicity, th 
 

0.93 
 

0.98 
 

1.03 
 

1.08 
 

1.12 
 

1.15 
 

Refractive index, n 2.024 2.142 
 

2.220 
 

2.294 
 

2.366 
 

2.434 
 

Young’s modulus (GPa) 42.96 49.17 53.70 58.03 62.19 66.17 
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Fig. 1. (a) Transmission and (b) absorbance spectra of (1) KBB4, (2) KBB5, (3) KBB6 
and (4) KBB9 glasses. Their surface plasmon resonance (SPR) absorption bands are 
shown in inset of (b). 
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Fig. 2. Plot of (αhν)1/2 as a function of photon energy (hν) for KBB4, KBB5, KBB6, 
KBB7, KBB8 and KBB9 glasses.  
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Fig. 3. XRD patterns of (a) KBB5 and (b) KBB9 glasses. 
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                Fig. 4. TEM image and SAED pattern of KBB5 glass.  
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Fig. 5. TEM images of KBB9 glass (a) and (b). Its HRTEM and SAED pattern are in (c) 
and (d) respectively.  
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Fig. 6. (Color online) FESEM micrographs of (a) KBB5 and (c) KBB9 glasses show the 
effect of Bi2O3 content on the phase separated particle size distribution which is plotted in 
(b) and (d) respectively (where R is the correlation coefficient). 
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Fig. 7. (a) FTIRR spectra of (1) KBB4, (2) KBB5 (3) KBB6, (4) KBB7, (5) KBB8 and 
(6) KBB9 glasses and (b) variation of reflection intensity ratio of BO4 to BO3 structural 
units of the glasses as a function of Bi2O3 content. 
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Fig. 8. (a) Linear thermal expansion of (1) KBB4, (2) KBB7 and (3) KBB9 glasses as a 
function of temperature. Their Tg and Td values are also shown and (b) variation of 
coefficient of thermal expansion (CTE) of the glasses as a function of Bi2O3 content. 
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Fig. 9. Variation of softening temperature (Ts), glass transition temperature (Tg) and 
deformation temperature (Td) of the glasses as a function of Bi2O3 content. 
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Fig. 10. Variation of dielectric constant of the glasses as a function of Bi2O3 content.  
 
 
 

 
 


