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Abstract: We report design and results on realization of an asymmetric co-axial dual-core fiber 
for an inherently gain flattened EDFA with median gains ≥ 28 dB and gain excursion within ± 2 
dB across the C-band.   
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1. Introduction 
Erbium doped fibers have been the major driver behind the success and revolution witnessed with dense wavelength 
division multiplexed (DWDM) systems.  The gain spectrum of a typical EDFA is however characterized with 
certain non-uniformity, which may induce unacceptable bit-error rate for some of the DWDM channels due to 
differential optical signal to noise ratio in a cascaded chain of EDFA’s [1].  Various techniques to flatten gain 
spectrum of an EDFA require use of gain equalization filters (GEF) [2-6].  In this paper, we present first results on 
design and fabrication of a new coaxial dual-core gain-flattened EDF refractive index profile (RIP) without 
requiring a GEF and it is based on resonant coupling analogous to that in an asymmetric directional coupler. 
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Fig. 1 a) Schematic of the RIP of the proposed dual-core fiber; b) Fractional power within the two individual cores as a function of wavelength 
for a dual-core fiber (having λP ~ 1530 nm) that illustrates switching of guided power from outer to the inner core at wavelengths longer than λP 

within the C-band; note that some fraction of the total power of the composite fiber at any wavelength would also reside outside these cores. 
 
2. Fiber design 
Schematic diagram of the RIP of the proposed coaxial fiber design is shown in Fig. 1 a).  It is assumed that the inner 
core is partially doped with Erbium up to a radius of rd. The fiber parameters a, b, c, n1 and n2 were optimized such 
that the fundamental modes corresponding to the isolated cores are phase-matched at nearly a wavelength (λP) of 
1530 nm.  It could be seen from Fig. 1 (b) that below λP, more of the signal power resides in the outer core and for 
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wavelengths longer than λP, the fractional signal power in the inner doped core becomes more than that in the outer 
core.  Thus, these longer wavelength signals would experience larger gain compared to those at wavelengths shorter 
than 1530 nm, and hence the relative difference in the gain spectrum between shorter and the longer wavelengths in 
the C-band would reduce thereby, resulting in an effective flattening of the gain spectrum of the EDFA.  The gain 
spectrum of this dual core EDF was modeled by using the standard three-level rate equation model [7], assuming 
forward pumping at 980 nm. The model also includes the wavelength dependent forward and backward traveling 
amplified spontaneous emission (ASE).  Keeping in view fabrication constraints of the MCVD method, one set of 
optimized design parameters that was obtained through simulation was: dimensions rd, a, b, c, d as 1.5, 5.25, 13, 
14.8, and 62.5 all in µm, respectively; refractive indices n0, n1, n2 respectively, were 1.44402, 1.45327, and 1.4617 at 
λ=1550 nm; Er+3-concentration was chosen to be 1.75×1025 ions/m3.  Based on this design as a target, fabrication 
recipe was defined and an EDF was fabricated.  The RIP of the fabricated EDF is shown in Fig. 2.  The so realized 
RIP was close to the designed one except for small profile perturbations typical in the MCVD process.  Fig. 3 shows 
a sample of the measured 16-ch signal gain under condition of multi-channel operation with I/P signal levels kept at 
–20 dBm/ch.  Gain variation was found to be more than the designed one due to variations in the profile parameters. 
However measured signal gain variation in the wavelength range 1545 ~ 1558 nm was ≤ ± 0.3 dB, which is much 
less than even the designed value (± 0.8 dB).  Nevertheless, it demonstrates the proof of concept of our proposed 
dual core coaxial EDF as a route to achieve gain flattening in EDFAs.  Fabrication recipe is being farther perfected 
to achieve better results.  We have also obtained gain flattened EDF designs following the same route for the L-band 
(1.57 ~ 1.61 µm), which are awaiting fabrication. 
 

 

 
Fig. 2: RI profile of inherently gain flattened EDF (IFC-7) Fi r 

 1530 1535 1540 1545 1550 1555 1560

25
26
27
28
29
30
31
32

Wavelength (nm) 

G
ai

n 
(d

B
) 

I/P signal level: -20 dBm/ch 
Optimized fiber length: 12m 

  0 50 10050 100 

0.02 

0.015 

 

 

0.01 

0.005

0.000

In
de

x
di

ff
er

en
ce

g. 3: The optical gain for multi-channel amplification of fibe
sample IFC-7 at I/P signal level of -20dBm/ch 
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3. Conclusion: 

 
We have proposed and realized a highly asymmetric dual-core coaxial EDF design, by tailoring phase resonant 
optical coupling between the two cores, to flatten the gain spectrum of an EDFA.  Such an intrinsically gain 
flattened EDFA should cut down the cost on the GEF head of an EDFA in a transparent metro network scenario, 
which require flexibility to route/drop off signals at any node in the network. 
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