Maiti, Sandipan and Pramanik, Atin and Mahanty, Sourindra (2014) Interconnected Network of MnO2 Nanowires with a ``Cocoonlike'' Morphology: Redox Couple-Mediated Performance Enhancement in Symmetric Aqueous Supercapacitor. ACS Applied Materials & Interfaces, 6 (13). pp. 10754-10762. ISSN 1944-8244

[img] PDF - Published Version
Restricted to Registered users only

Download (4Mb) | Request a copy


Low electronic conductivity and slow faradic processes limit the performance of MnO2 as an electrochemical pseudocapacitor with respect to cycling and power density. Herein, we report preparation of single-phase alpha-MnO2, composed of an interconnected nanowire network with ``cocoonlike'' morphology, and its application as electrode in a symmetric aqueous supercapacitor. Increased ``effective'' surface area, coexistence of micropores and mesopores, and enhanced electron transport in these nanowire networks result in a specific pseudocapacitance (C-S) of 775 F.g(-1) in 3 M KOH, derived from cyclic voltammetry in the potential window of -1 to +1 V at a scan rate of 2 mV.s(-1), the highest reported for two-electrode symmetric configuration. Furthermore, introduction of K4Fe(CN)(6) as a redox-active additive to KOH results in similar to 7 times increase in energy density at a power density of similar to 6000 W. kg(-1). The presence of the Fe(CN)(6)(4-)/Fe(CN)(6)(3-) redox couple provides an electron buffer source compensating for the slow faradic reactions. The results demonstrate that this simple approach might be an effective way to enhance the redox kinetics and reversibility of transition metal oxide-based pseudocapacitors.

Item Type: Article
Subjects: Electronics
Divisions: Fuel Cell and Battery
Depositing User: Bidhan Chaudhuri
Date Deposited: 19 Nov 2014 10:13
Last Modified: 19 Nov 2014 10:13

Actions (login required)

View Item View Item