Goswami, Sudipta and Bhattacharya, Dipten and Keeney, Lynette and Maity, Tuhin and Kaushik, S. D. and Siruguri, V. and Das, Gopes C. and Yang, Haifang and Li, Wuxia and Gu, Chang-zhi and Pemble, M. E. and Roy, Saibal (2014) Large magnetoelectric coupling in nanoscale BiFeO3 from direct electrical measurements. Physical Review B, 90 (10). Article No.-104402. ISSN 1098-0121

[img] PDF - Published Version
Restricted to Registered users only

Download (1952Kb) | Request a copy


We report the results of direct measurement of remanent hysteresis loops on nanochains of BiFeO3 at room temperature under zero and similar to 20 kOe magnetic field. We noticed a suppression of remanent polarization by nearly similar to 40% under the magnetic field. The powder neutron diffraction data reveal significant ion displacements under a magnetic field which seems to be the origin of the suppression of polarization. The isolated nanoparticles, comprising the chains, exhibit evolution of ferroelectric domains under dc electric field and complete 180. switching in switching-spectroscopy piezoresponse force microscopy. They also exhibit stronger ferromagnetism with nearly an order of magnitude higher saturation magnetization than that of the bulk sample. These results show that the nanoscale BiFeO3 exhibits coexistence of ferroelectric and ferromagnetic order and a strong magnetoelectric multiferroic coupling at room temperature comparable to what some of the type-II multiferroics show at a very low temperature.

Item Type: Article
Subjects: Electronics
Divisions: Nano-Structured Materials
Depositing User: Bidhan Chaudhuri
Date Deposited: 17 Nov 2014 09:03
Last Modified: 16 Dec 2014 07:43
URI: http://cgcri.csircentral.net/id/eprint/2526

Actions (login required)

View Item View Item