Bandyopadhyay, Payel and Dey, Arjun and Mandal, Ashok Kumar and Dey, Nitai and Roy, Sudakshina and Mukhopadhyay, Anoop Kumar (2012) Effect of scratching speed on deformation of soda-lime-silica glass. Applied Physics A-Materials Science & Processing , 107 (3). pp. 685-690. ISSN 0947-8396

[img] PDF - Published Version
Restricted to Registered users only

Download (1125Kb) | Request a copy


The grinding and polishing of a fundamentally brittle material like glass to an utmost precision level for ultra-sophisticated applications ranging from mobile devices to aerospace as well as space shuttle components to biomedical appliances pose a big challenge today. Looking simplistically, the grinding and polishing processes are basically material removal by multiple scratching at a given speed. Unfortunately however, the role of the scratching speed in affecting the material removal mechanism in soda-lime-silica (SLS) glass is yet to be comprehensively understood. Therefore, the present work explores the surface and subsurface deformation mechanisms of SLS glass scratched under a normal load of 5 N at various speeds in the range of 100-1000 mu m s(-1) with a diamond indenter of similar to 200 mu m tip radius. The results show important roles of the time of contact, the tensile stress behind the indenter and the shear stress just beneath the indenter in governing the material removal mechanisms of the SLS glass.

Item Type: Article
Subjects: Glass
Depositing User: Bidhan Chaudhuri
Date Deposited: 26 Jul 2012 10:57
Last Modified: 26 Jul 2012 10:57

Actions (login required)

View Item View Item