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SAPO 34 zeolite membranes were prepared on a tubular mullite support. Before membrane preparation, the support surfaces were
coated with seed crystals. Seeds particles were prepared by hydrothermal synthesis. Before seeding, the substrates were treated
with polyvinylpyrrolidone (PVP) to orient the seeds. Both the treated and untreated supports were seeded, and membranes were
synthesized on those support tubes by ex situ hydrothermal method. The PVP molecule exists in the two resonance structures.
Hence the acylamino bond —-N* = C-O~— acts as intermediate linker between support surface and seed surface. Due to charge
interaction, the seed crystals were anchored strongly to support surface. The synthesized membranes along with seed crystals were
characterized by XRD, FESEM, and EDAX analysis. The single-gas permeation with CO, and H, was investigated. Up to 5 bar of
feed pressure, the permselectivity of CO, and H, was as high as 4.2.

1. Introduction

Hydrogen is being considered as the most clean, reliable,
environmentally benign and affordable future energy source
[1-3]. Hydrogen can be produced by various routes such as
biomass, water, coal, natural gas, nuclear power, renewable
energies, and wastes [4]. To apply hydrogen as fuels and
chemicals, transport and power energy source, we have to
separate hydrogen from carbonaceous gas. Because CO,
reduces the energy content of the gas, and it is acidic and
corrosive in presence of water within the transport and
storage system [5]. The traditional cryogenic distillation,
adsorbent bed processes, and pressure swing methods are
used for gas separation in many industries. But in recent
times, however, membrane-based gas separation is becoming
increasingly popular due to its inherent advantage over the
more traditional method. These include low capital and
operating cost, lower energy requirement, and generally ease
of operation.

Silicoaluminophosphate (SAPO 34) with chabazite-
(CHA-) type frame work having pore diameter 0.38 nm is
an efficient member of zeolite family, has been studied for
various applications, and, most notably, has shown excellent
performance in separations, catalysis, and adsorption [6-11].

Considering their molecular sieving properties and uniform
pore size, high thermal resistance, high mechanical strength,
and order microporous structure, zeolite membrane have
attracted great interest and successfully employed to sep-
arate carbon dioxide and hydrogen from different gases
[12-15]. This small-pore SAPO 34 zeolite membrane has
good H,/CO, permeation ability due to a combination of
difference in diffusivity and competitive adsorption. There
are many reports on the improvement of the formation
stages of the membranes like microwave heating [16, 17],
addition of intermediate silane layer to increase the adhesion
between gel layer and supporting substrate [18], vacuum
seeding [19], and so forth. The in situ hydrothermal synthesis
appears to be the best studied method, in which the porous
support is immersed into the synthesis solution, and then
the membrane is formed by direct crystallization. However,
it is difficult to prepare high-quality membrane by this in situ
crystallization method directly [20]. Coating the zeolite seed
on the support surface before hydrothermal synthesis, which
is also termed as secondary growth method, is an effective
approach to develop a high-quality zeolite membrane. It is
well known that the presence of seed on the support surface
plays a vital role in membrane formation. Synthesis with
seeds gives a better control of the membrane formation
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FIGURE 1: (a) XRD pattern and (b) FESEM of SAPO 34 crystals used as seed for membrane synthesis.

process by separating the crystal nucleation and growth
with a shortened crystallization time [21]. In addition, the
secondary growth ensures the formation of the phase pure
zeolite crystal on the support. The secondary growth method
which was proposed by Lovallo and Tsapatsis [22] exhibits
many advantages such as better control over membrane
microstructure and higher reproducibility [23].

An important approach to the preparation of SAPO 34
zeolite monolayer with solid packing was binding zeolite
crystals to the support substrate through a molecular linker
by covalent bonding, ionic linkage, and hydrogen bonding
[24-26]. Molecular linkers are nothing but the intermediate
buffer layer of high importance in the fabrication of a
uniformly oriented zeolite monolayer as they can bind and
form homogeneous closely packed membrane layer on the
support.

In this work, we report a simple technique for proper
orientation of SAPO 34 seed crystals on support surface
to synthesize a SAPO 34 zeolite membrane layer on clay
alumina substrate by secondary growth method. Almost-
dense zeolite membrane was synthesized on properly seeded
substrate. The ultimate performance of the membrane was
characterized by gas permeation studies.

2. Experimental

2.1. Membrane Synthesis

2.1.1. Seeds Synthesis. The materials used for the synthesis
were boehmite powder (SASOL), silica sol (Ludox 40 AS),
phosphoric acid (Qualigens Fine Chemicals, India), and
morpholine (SD fine chemicals, India), as well as distilled
water. Two reactant mixtures were prepared, respectively,
dissolving boehmite powder, phosphoric acid, and required
amount of water (mixture 1) to the reaction mixture.
The mixture was stirred for overnight. In another mixture
(mixture 2), silica sol and morpholine were added, and

the remaining amount of water was added to the reaction
mixture. After stirring mixture 2 for 1h, it was mixed
slowly under stirring at room temperature with mixture
1. The resulting mixture was stirred vigorously for 15—
30 min and kept under stirring for overnight to produce a
homogeneous sol. The molar composition of the sol used
for the synthesis was A,O3:Si0;:P,05:H,01:0.3:1:66.
The prepared homogeneous sol was kept in a Teflon line
hydrothermal bomb and heated at 170°C for 120 h. At the
end of synthesis, the seeds were centrifuged at 12000 rpm
for 20 min and washed with distilled water. The procedure
was repeated 4 times. The resultant precipitate was dried
overnight and calcined at 100°C for 1 h.

2.1.2. Seeding of the Substrate. SAPO 34 seed crystals were
dispersed in deionised water under ultrasonication for 2 h.
Indigenous mullite tube of diameter 10 mm and thickness
3mm and 60 mm length was used as substrate for synthesis
of SAPO-34 membranes. Before seeding, the substrates were
cleaned with acetone in an ultrasonic cleaner (Vibracell,
USA) for 5 minutes. The outer surface of the support tubes
was wrapped with Teflon sheet so that the zeolite layer was
formed inside the tube. Before addition of seed crystals,
the support substrate was coated with 3% aqueous solution
of PVP. To increase the orientation of the seed crystals on
support surface, an intermediate PVP layer was applied. The
treated and untreated support substrate was dipped in a 3%
SAPO 34 zeolite suspension in deionized water 5 times for
duration of 15s. After the dipping procedure, the seeded
supports were dried at 80°C for 24 h.

2.1.3. SAPO-34 Membrane Synthesis. The seeded substrate
was placed vertically in an autoclave. The autoclave was filled
with reaction mixture having composition Al Os:SiO;:
P,05:H,0 1:0.3:1:66. The procedure was same as seed
synthesis. The synthesized membranes were calcined in air
at 550°C for 5 h to remove the templates.
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F1GURE 2: Schematic of the resonance structures of PVP molecule.
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FIGURE 3: Schematic representation of seeded membrane with PVP intermediate layer.

2.2. Membrane Characterization. The crystalline structure of
the as-synthesized membrane was determined by XRD pat-
tern. XRD was carried out on a Philips 1710 diffractometer
using CuK, radiation (a = 1.541 A).

Microstructure and morphology of the growth layer
were examined using scanning electron microscopy (FESEM:
model Leo, S430i, UK).

Single-gas permeation for H, and CO, was measured by
a specially designed permeation cell developed in our labora-
tory. The gas permeance of the membranes was measured by
soap film flow meter under the feed pressure of 2 to 5 kg/cm?
and at room temperature. The permselectivity of two gases
G1/G, was defined as the permeance ratio of G; and gas
G;. The gas permeation measurement of each single gas was



repeated until the permeance data for the successive 10 tests
were closed.

3. Results and Discussion

Figure 1(a) depicts the XRD pattern of SAPO 34 seeds
crystals prepared by hydrothermal technique at 170°C for
120 h. The characteristics of the peaks of seed crystals are
designed by their (hkl) values. The morphology of those
SAPO 34 crystals is shown in Figure 1(b). Comparing the
XRD and FESEM, the size range of seed crystals is ~
100 nm. The surface area of the synthesized powder was
660 m?/g. In order to form a continuous zeolite membrane
on support surface, the coverage of the seed crystals must
be high. For higher coverage, smaller-sized seed crystals are
most suitable. According to the formation mechanism of
zeolite membrane on the porous support, the nucleation
of zeolite on the support gel interface and that in the
bulk synthesis mixture are competitive processes. Thus to
develop a continuous membrane layer, the nucleation of
zeolite in the bulk synthesis mixture must be inhibited, while
the nucleation of zeolite on the support surface must be
increased. Another advantage of surface seeding for prepa-
ration of membrane layer on support surface is formation of
zeolite phase is accelerated. Polycrystalline zeolite membrane
contains defects, that is, inter-crystalline pathway which is
also called non-zeolitic pores. The transport mechanism of
gas molecules through non-zeolitic pores is difficult, and it
is difficult to quantify, because the pore size of these non-
zeolitic pores is not well defined. Usually non-zeolitic pores
are larger than zeolitic pores. Presence of non-zeolitic pores
reduces the selectivity of the gases. The main sources of non
zeolitic pores result from cracks and defects of the membrane
layer. The main cause of the crack is due to the lack of
good adherence between zeolite layer and substrate layer.
Considering this fact and to obtain a crack-free membrane
layer on the substrate, proper seeding on the surface is
desirable. In our previous work [27], we have reported that
application of intermediate layer between substrate and seed
reduces the defects. The PVP molecule exits in the two
resonance structures. In case of PVP, the oxygen atom is more
electronegative than nitrogen atom, and it is expected that
negative charge on PVP prefers to reside on oxygen atom.
Figure 2 shows resonance structure of the PVP molecule. The
partial positive charge nitrogen atom and partial negative
charge on the oxygen atom can behave as electron acceptor
and, donor respectively. Hence the acylamino bond -N* =
C-O~— acts as intermediate linker between support surface
and seed surface. Due to charge interaction, the seed
crystals were anchored strongly to support surface. Figure 3
depicts the schematic representation of anchoring between
support surface and seed crystals. The seeded supports were
hydrothermally treated at 170°C from 48 h to 120 h. Figure 4
shows the XRD pattern of SAPO 34 membrane synthesized
for 48h, 72h, 96 h, and 120 h and compared with standard
pattern of SAPO 34 zeolite. As the diffraction intensity of
the SAPO 34 zeolite membrane on support surface was
too weak to detect by XRD, the diffraction pattern of the
bulk powders collected from hydrothermal container was
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FIGURE 4: XRD pattern of SAPO 34 crystals synthesized for different
time ranging from 48 h to 120 h.

studied. It is clear from the XRD pattern that after 48 h
of synthesis some crystalline phase started to form and
continued up to 72h, but the phase was not SAPO 34.
After prolonged heating, at 96 h, the crystalline phase was
converted into amorphous phase, and on further heating, it
was transformed into SAPO 34 after 120 h. Figures 5(a) and
5(b) show the FESEM images of membrane synthesized at
120 h with properly seeded support surface. To ensure the
proper formation of membrane layer on support substrate
and uniform distribution of component elements, the ele-
mental mapping along with EDAX analysis of the SAPO 34
membrane was studied. Figure 6(a) shows the corresponding
membrane layers with homogeneous interlocked structure.
Elemental mapping (Figures 6(b)—6(e)) and EDAX analysis
(Figure 6(f)) confirm the formation of SAPO 34 membrane
layer. The quantitative elemental analysis of the synthesized
SAPO 34 as membrane coating is described in table, inside
the spectral figure. However XRD and FESEM can only
indicate whether a continuous membrane was formed or not
on the support, but cannot confirm the quality of zeolite
membrane. The quality of zeolite membrane can only be
evaluated by gas permeation properties of the membrane. It
is well known that performance of a membrane will increase
with decreasing defects.

The permeation of CO, and H, were measured at room
temperature directly after calcining the membrane. The
permeation of gas through the micropores of the zeolite
can be explained quantitatively by adsorption-diffusion
mechanism, where the permeated flux is expressed as the
diffusion rate through the micropores between the two sides
of the membrane. The diffusion rate becomes significantly
smaller where the kinetic diameter of the gas becomes larger
than the size of the zeolitic pores due to the molecular sieving
effect. The molecular kinetic diameters of H, and CO, are
0.29 and 0.33 nm, respectively, which are close to the pore
size of SAPO 34 zeolite. The configurational diffusion and
the difference in molecular size between H, and CO, result
in the difference in the rate of diffusion through the SAPO
34 zeolite channels. The diffusion rate of H, is faster than
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Figure 5: FESEM micrograph of (a) substrate with PVP intermediate layer with seed layer, (b) membrane layer synthesized on seeded

substrate.
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FIGURE 6: (a) FESEM micrograph of SAPO 34 membrane, and (b—e) represent the elemental mapping (O, Al, Si, and P) of the developed
membrane and (f) corresponding EDAX spectra of the membrane layer along with atomic percentage.

that of CO;, and therefore, H, and CO, can be separated
by SAPO 34 zeolite membrane. So the single-gas permeation
depends on the kinetic diameter of the gases. Tables 1 and 2
describe the permeability of CO;, and H, through the SAPO
34 membrane prepared without any intermediate layer and
PVP intermediate layer, respectively, before seeding, under
different pressure. CO, has a lower permeance than H,. The
rate of change of permeance with pressure is less for CO,
than H,. At high pressure, CO, is adsorbed more strongly
on SAPO 34 zeolite membrane surface than H,, and the

rate of desorption of CO, from the membrane surface also
decreased. As a result, flux rate decreases. Therefore, the
H,/CO; selectivity is changed from 1.16 to 4.2. Comparison
of the permeability values described in both tables confirms
that “reduced defect” membrane is formed with PVP as
intermediate layer. Table 2 describes the change of selectivity
of the above-mentioned gases at different pressure. In case
of H, and CO,, the separation is controlled by competitive
adsorption and diffusion. The combined effect of these two
determines the ultimate selectivity.
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TABLE 1: Room temperature single gas permeation for H, and CO, through SAPO 34 membrane on untreated support at 30°C.
Temperature Pressure Permeance X107 (mol/m?-sec-pa) ..
° 2 Selectivity

C) (kg/cm?) H, CO,

30 2 10.23 12.0 0.85

30 3 22.5 23.2 0.96

30 4 29.5 27.5 1.07

30 5 40.1 15.0 2.67

TABLE 2: Room temperature single-gas permeation for H, and CO, through SAPO 34 membrane on the support treated with PVP at 30°C.

Permeance X107 (mol/m?-sec-pa )

. ) ..
Temperature (°C) Pressure (kg/cm?*) H, o, Selectivity
30 2 6.0 1.8 3.33
30 3 7.0 6.0 1.16
30 4 16.0 4.0 4

30 5 21.0 5.0 4.2

4. Conclusion

SAPO 34 membranes were synthesized on clay alumina tubu-
lar support. The membrane in this study was synthesized by
ex situ hydrothermal technique. Application of intermediate
layer confirms the formation of “reduced defect” SAPO 34
membrane. The intermediate PVP layer helps in formation
of uniform seeded layer, which on further treatment forms
“reduced defect” membrane. Single gas permeation studies
showed that selectivity (permeability ratio) of the permeance
increases with increasing feed pressure. The selectivity of
the H,/CO, slightly increases with increasing pressure. At
higher pressure, competitive adsorption and difference in
diffusivity due to molecular kinetic diameter are responsible
for selectivities of H,/CO,.
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