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a b s t r a c t

Photoluminescence properties of Bi3+ co-doped Eu3+ containing zinc borate glasses have been

investigated and the results are reported here. Bright red emission due to a dominant electric dipole

transition 5D0-
7F2 of the Eu3+ ions has been observed from these glasses. The nature of Stark

components from the measured fluorescence transitions of Eu3+ ions reveal that the rare earth ions

could take the lattice sites of Cs or lower point symmetry in the zinc borate glass hosts. The significant

enhancement of Eu3+ emission intensity by 346 nm excitation (1S0-
3P1 of Bi3+ ions) elucidates the

sensitization effect of co-dopant. The energy transfer mechanism between sensitizer (Bi3+) and activator

(Eu3+) ions has been explained.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The spectroscopic properties of Eu3+ ion have extensively been
investigated in different host materials due to its intense red

emission [1–3]. Many Eu3+-doped materials are of commercial
importance in the display devices as efficient red emitting
phosphors [4–6] and solid-state lasers [7]. The Eu3+ ions are also
being used as a probe ion to study the local crystal field (CF) effect
of host materials because of the forced electric dipole (ED)
transition 5D0-

7F2, which is hypersensitive to relatively smaller
changes in the chemical surroundings of the luminescent active
ion [8].

In recent years, heavy metal oxides such as bismuth (Bi), lead
(Pb) and tellurium (Te) based glasses have attracted more
attention because of their low phonon energies, extended infrared
transmission and high non-linear optical properties which are
applicable in non-linear optoelectronics including optical fiber
and optical switches. Bismuth in glasses plays a dual role as a
glass network former (NWF) at high concentration and a modifier
(NWM) at low concentration. In addition to this, Bi3+ ions possess
interesting luminescence characteristics in the high-energy region
ranging from UV–Vis and also in the low-energy IR region of the
electromagnetic spectrum. The materials showing IR emission of
ll rights reserved.
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Bi3+ ions in the wavelength range 1000–1400 nm depending upon
the excitation energy have drawn much consideration by many
research groups because they can cover first communication
window [9]. The current efforts in the development of mercury-
free fluorescence lamp and plasma display panels (PDP) need the
phosphors, which are having significant absorption or excitation
in the VUV region and emission in the visible. For PDP and display
applications, rare earth doped compounds are usually employed
as phosphor materials. An enhancement in the luminescence
efficiency of rare earth doped materials have been observed on co-
doping with Bi3+ ions because of their strong absorption bands in
the VUV–UV region and capability of energy transfer to active ions
suggesting the role of Bi3+ ions as a sensitizer to the rare earth ions
[10,11]. The position of Bi3+ absorption and emission bands
strongly depend on host materials due to large expansion of s

and p orbitals of Bi3+ ions, which ultimately influence the energy
transfer efficiency of Bi3+ ions [12]. Thus, the sensitization effect of
Bi3+ on active ions varies from host to host. Among the glassy
hosts, zinc borate glasses possess some uniqueness in effectively
absorbing UV region and transferring it to the active ions, which
enables them for potential industrial applications in the forms of
solar blind UV sensor and optical fiber with a large core diameter
etc. Earlier in the literature, an efficient fluorescence has been
reported from Eu3+ and Tb3+ doped zinc borate glasses under an
UV excitation due to an energy transfer from direct band gap ZnO
crystallites present in those glasses [13].

Hence, in the present work, the sensitization effects of the Bi3+

ions on the luminescence properties of Eu3+ ions in 60ZnO–40B2O3
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glasses has been systematically investigated as a function of Bi3+

concentration.
2. Experimental

The glasses with the chemical composition in mol% of
60ZnO–(40�x)B2O3–0.2Eu2O3–xBi2O3 (x ¼ 0, 0.1, 0.2, 0.5, 1.0)
were prepared by a conventional melt quenching method.
Appropriately weighed and thoroughly mixed batches of reagent
grade oxide chemicals were sintered at 300 1C for 12 h and were
melted in platinum crucible at 1100 1C for 45 min with an
intermittent stirring to obtain homogeneous melt. Each of the
melts was poured at 1000 1C on preheated graphite mold followed
by annealing at 450 1C for 1 h and slowly cooling to the room
temperature. The obtained glasses were cut and polished for
their analysis purpose. The glass samples have been labeled
as Bi0–Bi1.0 depending upon the Bi2O3 concentration for
convenience.

The densities of the glasses were measured by Archimedes’
method using water as immersion liquid. Refractive indices (nF0, ne

and nC0) of the glasses were obtained on a Pulfrich refractometer
(Model: PR 2) at three different wavelengths of 480, 546.1 and
643.8 nm, respectively. The optical absorption spectra of all (Eu3+,
Bi3+)-codoped zinc borate glasses were recorded on a Perkin-
Elmer Lambda-20 spectrophotometer in the wavelength range of
200–600 nm. Both emission and excitation spectra were measured
on a Spex Fluorolog-2 Spectrofluorimeter equipped with a 150 W
Xe—lamp as an excitation source.
3. Results and discussion

3.1. Physical and optical properties

Some of the important physical and optical properties of zinc
borate glasses doped with 0.2 mol% Eu2O3 and varied contents of
Bi2O3 from 0 to 1.0 mol% are presented in Table 1. It is clear from
this table that, the average molecular weight (Mavg) and density
(d) of the glasses are found to be increasing with the Bi3+ addition,
which may be due to the inclusion of heavy metal ions (Bi3+) in
the glass matrix. The density related other physical parameters
such as Molar volume (VM), Eu3+ ion concentration (NEu),
Interionic distance (ri), Polaron radius (rp) and Field strength (F)
Table 1
Physical and optical properties of (Eu3+, Bi3+)-codoped zinc borate glasses.

Properties Bi0 Bi0.1 Bi0.2 Bi0.5 Bi1.0

Physical

Mavg (g/mol) 77.24 77.64 78.04 79.23 81.21

d (g/cm3) 3.701 3.723 3.745 3.786 3.866

VM (cm3) 20.87 20.85 20.84 20.93 21.01

NEu (1020 ion/cm3) 1.154 1.155 1.156 1.151 1.147

ri (Å) 20.54 20.53 20.53 20.56 20.58

rp (Å) 8.28 8.27 8.27 8.28 8.29

F (1014 cm2) 4.38 4.38 4.38 4.37 4.36

Optical

ne (546.1 nm) 1.6709 1.6716 1.6761 1.6816 1.6911

nF0 (480.0 nm) 1.6781 1.6789 1.6835 1.6891 1.6991

nC0 (643.8 nm) 1.6642 1.6648 1.6692 1.6742 1.6836

(nF0�nC0) 0.0139 0.0141 0.0143 0.0149 0.0155

ne 48.28 47.68 47.15 45.74 44.51

R% 6.31 6.32 6.38 6.46 6.59

RM 2.60 2.60 2.58 2.57 2.55

n2 (10�13 esu) 2.73 2.79 2.87 3.04 3.25

g (10�16 cm2/W) 0.68 0.70 0.72 0.76 0.81

wð3Þ1111 (10�14 esu) 1.11 1.14 1.17 1.25 1.34
of all zinc borate glasses have also been computed using the
relevant formulae [14,15]. Normally, when the density (d) of
the material increases, its molar volume (VM) decreases, but the
present zinc borate glass series have shown a linear dependence
of molar volume with their density variation i.e., both density and
molar volume increased indicating the opening up of glass
network which may be due to the formation of non-bridging
oxygen (NBOs) with the inclusion of Bi3+ ions. The measured
refractive indices of the glasses at three different wavelengths
have been used to evaluate the optical properties such as Abbe
number (ne), Reflection loss (R%), Molar refractivity (RM), and non-
linear optical properties of the glasses such as nonlinear refractive
index (n2), nonlinear coefficient (g) and third order nonlinear
susceptibility ðwð3Þ1111Þ [16–18]. The obtained data are presented in
the same table. The refractive indices of these glasses show the
similar trend as density, increasing linearly with the Bi2O3

content, which can be attributed to the hyper-polarizability of
the Bi3+ ions possessing 6s2 lone pairs in its valence orbital. Due to
this, it can be seen from the Table 1 that the overall non-linear
properties of the glasses have been increased.
3.2. Spectral analysis

3.2.1. Absorption spectra

Fig. 1 shows the room temperature absorption spectra of (Bi3+,
Eu3+)-codoped zinc borate glasses. The spectra reveal the
absorption bands of Eu3+ ion due to transitions from its ground
state multiplets such as 7F0 and thermally populated 7F1 levels to
the upper levels of 4f6 configuration. As in the case of Eu3+ ions,
the ground state 7F0 and the higher-level 7F1 are very close to each
other (around 380 cm�1) so that at room temperature a significant
amount of 7F1 levels are thermally populated [19,20]. This results
in a characteristic absorption spectrum of Eu3+ ions exhibiting
closely spaced doublets. In the present study, the recorded
absorption peaks for all glasses are assigned to the
corresponding transitions of 7F0-

5D0, 5D1,
5D2, 5D3, 5L6, 5G3,

5G4, 5D4 and 7F1-
5D0, 5D1,

5L6, 5D4, respectively, depending upon
their peak energies. It is observed from this figure that, the overall
absorbance of the glasses has been found to be slightly increasing
with an increase in Bi2O3 content. This may be attributed to a
small increase in reflection losses (R%) at their surfaces due to
enhancement of refractive indices with the increase of bismuth
content. Another interesting observation made from the
absorption spectra of these glasses is that, the UV band edge is
found to be shifting towards a lower energy with an increase of
Bi2O3 content in the glasses. This red shift in the UV cut-off
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Fig. 1. Absorption spectra of (Eu3+, Bi3+)-codoped zinc borate glasses.
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wavelength with the change of Bi2O3 content indicates a strong
absorption due to Bi3+ ions, which lies in the UV region [21,22].
3.2.2. Emission and excitation spectra

The measured photoluminescence spectra of (Bi3+, Eu3+)-
codoped zinc borate glasses with an excitation at 392 nm
(7F0-

5L6 of Eu3+) have uniformly exhibited emissions from both
5D1 and 5D0 excited levels to the ground state multiplets of Eu3+

ions. The Fig. 2 presents a specimen profile of emission spectrum
of Eu3+-doped zinc borate glass. Among the emission bands
detected, the five bands in the wavelength range of 570–750 nm
centered at 580, 594, 615, 655 and 708 nm are due the transitions
5D0-

7F0, 1, 2, 3, 4 and two weak emissions in the wavelength range
520–560 nm at 528 and 555 nm are assigned to the transitions of
5D1-

7F1,2, respectively. Relatively low intensities of emissions
from 5D1 are attributed to the presence of high energy phonons
(around 1300 cm�1) in the borate glass, which enables a faster
decay of the 5D1 excited level to the lower lying 5D0 level resulting
in a dominant luminescence from 5D0 excited level to the ground
state multiplets. Because of the fact that the emissions from 5D0 to
7FJ of Eu3+ ion could play an important role as probe in
understanding the local field symmetry, the recorded
fluorescence spectrum in Fig. 2 has been critically analyzed and
following important observations have been made. The emission
due to 5D0-

7F0 transition at 582 nm is normally forbidden,
however in the present host, it is observed in moderate emission
intensity. Two emission bands centered at 594 nm (5D0-

7F1) and
615 nm (5D0-

7F2) could be attributed to the magnetic dipole
(MD) and forced electric dipole transitions, respectively. The
forced electric dipole transition appears when Eu3+ ions occupy
non-inversion lattice centers, whereas the magnetic dipole
transition appears due to inversion center lattices [23,24].
Therefore, the ratio between integrated intensities of these two
transitions (I5D0-

7F2/I5D0-
7F1) directly elucidates the

asymmetry nature around Eu3+ ions in the host. In the present
glass system its value is found to be 2.982. Such a large value of
the asymmetric ratio and the existence 5D0-

7F0 transition with a
moderate intensity substantiates the presence of strong crystal
field in the vicinity of rare earth ion causing Stark splitting in
electric dipole (5D0-

7F2) and magnetic dipole (5D0-
7F1)

transitions. In spite of the site-to-site difference which prevails
in amorphous materials; the later transition shows clearly three
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Fig. 2. Fluorescence spectrum Eu3+-doped zinc borate glass (inset: deconvolution

of 5D0-
7F2 transition).
Stark components while the former at 615 nm has exhibited five
components from the deconvolution as shown in the inset of
Fig. 2. Based on the selection rules, the observed number of three
and five Stark components for magnetic and electric dipole
transitions of Eu3+ ions, respectively, could reveal the fact that,
the dopant rare earth ions take Cs or lower symmetry sites in the
present glass network [25].

By monitoring the prominent red emission of Eu3+ (5D0-
7F2)

at 615 nm the excitation spectra of (Eu3+, Bi3+)-codoped zinc
borate glasses have been recorded and shown in Fig. 3. The
different excitation peaks at 317, 360, 381, 392, 412, 462 and
524 nm are assigned to the transitions 7F0-

5H6, 5D4, 5Gj,
5L6, 5D3,

5D2,
5D1 and peaks at 398 and 530 nm are due to the transitions

from thermally populated 7F1 level to the 5D1 and 5L6 excited
levels of Eu3+ ions, respectively. These observations are fully in
agreement with the measured absorption spectra as described in
the earlier section. Further, it is clear from Fig. 3 that, the
excitation spectra have also demonstrated variation in the UV
region with the change in the Bi2O3 concentration. The excitation
peak at 317 nm due to transition 7F0-

5H6 of Eu3+ ions is found to
be suppressed with the formation of a broad band at around
329 nm upon the introduction of bismuth in the glass. This band
shows a gradual shift towards the longer wavelength (up to
346 nm) with the increasing Bi2O3 concentration to 1 mol% and
hence is attributed to electronic transitions of Bi3+ ions. The Bi3+

ion with 6s2 electronic configuration possesses the ground state
1S0 and four excited states 3P0, 3P1,

3P2 and 1P1 in the order of
increasing energy. The transitions between the ground state 1S0

and 3Pj excited levels are spin-forbidden; however the 1S0-
3P1

transition becomes partially allowed by mixing with the singlet
state and triplet state of Bi3+ ions. The observance of Bi3+

absorption bands strongly depends on the host matrix. In
several hosts, two absorption bands have been reported, which
belong to the transitions of 1S0-

3P1 and 1P1 [22]. The later band
lies in the high energy UV region than the former one which
appears at relatively lower energy. In certain hosts, a single
absorption band has been observed at longer wavelength
(�320 nm) due to the 1S0-

3P1 transition [12,23,26]. The
absence of the 1P1 absorption band could be due to its possible
overlapping with the fundamental absorption region of the host.
The 1S0-

3P1 absorption transition of Bi3+ ion is usually located at
wavelength around 300 nm and is strongly influenced by the
covalency of Bi3+ bonding, which varies with the nature of the
300 350 400 450 500 550

λEm : 615 nm

329 nm

Bi1.0

Bi0.5

Bi0.2

Bi0.1

Bi0

*

5D2

5D1

5D1

(Eu3+)
5H6

(Bi3+)
346 nm  

5D4 5D3

5GJ

5L6

5L6

*

R
el

. E
x.

 I
nt

en
si

ty
 (

a.
u.

)

Wavelength (nm)

Fig. 3. Excitation spectra of (Eu3+, Bi3+)-codoped zinc borate glasses.
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surrounding ligands. If the electronegativity of the ligand
decreases, the absorption band shifts towards a longer
wavelength [27]. Hence, from the present (Eu3+, Bi3+)-codoped
zinc borate glass system, the observed excitation band which is
found between 329 and 346 nm depending upon the Bi3+ ion
concentration belongs to the 1S0-

3P1 transition of Bi3+ ion. The
detection of this excitation band due to Bi3+ by monitoring Eu3+

emission indicates an influence of Bi3+ on Eu3+ fluorescence.
In order to examine the effect of Bi3+ codoping on the emission

of Eu3+ ions, the fluorescence spectra of Eu3+ doped and (Eu3+,
Bi3+)-codoped zinc borate glasses under the excitation of Bi3+ ions
into 3P1 level have been measured and is shown in Fig. 4. It is clear
from this figure that, even the Eu3+-doped glass without Bi3+

revealed Eu3+ emission from 5D0 to 7F0,1,2,3,4 ground state
multiplets, this may be due to the non-resonant excitation into
the closely packed upper laying levels of Eu3+ which later cascades
down to 5D0 level. Upon the inclusion of Bi3+ ions in the glass, the
intensity of these transitions has been significantly enhanced. In
addition to this, a broad emission band peaking at 484 nm has
been observed with a gradual increase in its intensity with an
increase in Bi3+ concentration. This band is assigned to the Bi3+

emission due to 3P1-
1S0 transition. Thus the Stokes shift between

excitation (1S0-
3P1) and emission (3P1-

1S0) of Bi3+ ions is found
to be around 8240 cm�1, which demonstrates an extension of the
energy level of Bi3+ ions in this host. With the concentration of
Bi2O3 range from 0.1 to 1.0 mol% keeping the Eu3+ concentration
constant at 0.2 mol% in zinc borate glasses, a two folds increase in
the Eu3+ intensity has been observed. This enhancement in the
Eu3+ intensity on inclusion of the Bi3+ ions indicates the energy
transfer between Eu3+ and Bi3+ ions in the present zinc borate
glasses. The energy transfer mechanism in this system has been
understood by studying excitation spectra systematically.

The energy transfer among sensitizer and activator is mainly
due to a radiative transfer through emission of sensitizers and re-
absorption by activators or/and non-radiative transfer associated
with the resonance condition between the sensitizer and the
activator ions. The efficiency of the radiative energy transfer
depends on how competently the activator ions are excited by the
emission of sensitizers. It requires a significant overlap of the
emission of the sensitizer and the absorption of the activator. The
non-radiative energy transfer is accompanied by the electric
multipole interactions and exchange interactions. However, the
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Fig. 4. Emission spectra of (Eu3+, Bi3+)-codoped zinc borate glasses under Bi3+

excitation (inset: variation of red emission of Eu3+ as a function of Bi2O3 content).
probability of total energy transfer is proportional to the energy
overlap between the emission of sensitizers and absorption of
activators, whether the transfer has been caused by a radiative
decay, exchange or multipole interactions. Thus, the energy
overlap plays a crucial role in the energy transfer from sensitizers
to activators [28,29]. It can be seen that the emission band of Bi3+

ions at 484 nm overlaps appreciably with the excitation peaks of
5D1,

5D2 and 5D3 of Eu3+ ions satisfying the condition for an energy
transfer. Hence, it is obvious to attribute the enhancement of Eu3+

emission intensity in the zinc borate glasses codoped with Bi3+

ions to the energy transfer from Bi3+ to Eu3+ ions.
In an effort to further confirm and understand the energy

transfer mechanism in this system, the excitation spectra of (Eu3+,
Bi3+)-codoped zinc borate glasses have been measured by
monitoring 5D1-

7F1 transition at 528 nm as this level is totally
overlapping on the emission band of Bi3+ ions. Fig. 5 shows the
excitation spectra of (Eu3+, Bi3+)-codoped zinc borate glasses
monitoring the Eu3+ emission at 528 nm. From this figure it is
clear that, the spectra revealed only two excitation peaks; one is a
strong broad band in the range of 329–346 nm and the other is
relatively narrow at 392 nm. The first peak has been assigned to
3P1-

1S0 transition of Bi3+ and the later one to 7F0-
5L6 transition

of Eu3+. The relative intensity ratio of these two peaks has been
observed to be varying from 0.54 to 1.93 for Bi0.1 to Bi1.0 glasses,
respectively, signifying the contribution of Bi3+ excitation to the
5D1 level emission of Eu3+ is increasing with the increase of
bismuth concentration over the 5L6 level excitation of Eu3+ ions.
Thus, the strong Bi3+ excitation band for the Eu3+ emission
indicates an efficient energy transfer from Bi3+ to Eu3+ in this host
glass. However, it is to mention here that the energy transfer from
Bi3+ to Eu3+ is not full but only a partial. This is established with
the co-existence of Bi3+ emission band in the fluorescence spectra
as depicted in Fig. 4.

Also it is observed from Fig. 4 that, the emission intensity of
Eu3+ increases rapidly at lower concentration of Bi2O3 showing
more than two fold enhancements for Bi0.5 glass (0.5 mol% of
Bi2O3). The inset of Fig. 4 shows the relationship between
emission intensity of Eu3+ ions with the Bi2O3 concentration in
the zinc borate glasses. For small Bi2O3 concentration, the Eu3+

intensity increases rapidly, however it shows saturation at higher
Bi2O3 concentrations. It is obvious that the sensitized effective-
ness of the Bi3+ ions on the Eu3+ emission varies with the Bi3+
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concentration, which indicates the difference in the probability of
energy transfer from Bi3+ ions to Eu3+ ions. The observed
saturation in the increase of Eu3+ emission intensity at higher
concentration of Bi3+ could be explained as follows. In a
sensitizer–activator doped system, the energy transfer efficiency
depends not only on the probability of energy transfer from
sensitizer to activator but also on the activator to sensitizer back
transfer and/or on the probability of energy transfer amongst the
sensitizers [28]. In order to examine any occurrence of energy
back transfer, the excitation spectra of (Bi3+, Eu3+)-codoped
glasses have been recorded by monitoring the Bi3+ emission at
484 nm as shown in Fig. 6. The spectra exhibit only a single band
due to Bi3+ ions; thus it is clear to that there is no back transfer of
energy from Eu3+ to Bi3+ ions in the zinc borate glass system.

When the probability of an energy transfer amongst the
sensitizers increases, an excitation of sensitizers could often be
followed by either one or several sensitizers before a sensitizer to
the activator energy transfer could occur. These transfers are often
accompanied by a small amount of energy of absorption due to
relaxation of lattice and quenching sites. It is therefore quite
evident that, energy transfer between sensitizers will reduce the
probability of energy transfer to activators. Thus, at high Bi3+

concentration, the Eu3+ emission intensity tends to saturate
because of the reduction in the probability of energy transfer
from Bi3+ to Eu3+ accompanied by an increase in Bi3+ ion emission.
4. Conclusions

The sensitization effectiveness of the Bi3+ ions on the
luminescence properties of Eu3+ ions in the zinc borate glasses
has been investigated as a function of Bi3+ concentration. The Eu3+

ions are found to occupy the lattice sites of Cs or lower point
symmetry in the present zinc borate glasses. A single excitation
band due to 1S0-
3P1 transition of Bi3+ ions has been observed

which is found to be shifting towards the longer wavelength with
an increase in Bi3+ content in the glasses resulting in a broad
structure less emission located at 484 nm due to 3P1-

1S0

transition. The emission intensity of Eu3+ ions has been enhanced
by more than two folds with the Bi3+ addition in the glasses. This
enhancement in the luminescence properties of Eu3+ ions is
attributed to an efficient energy transfer from Bi3+ to Eu3+ ions in
this host. For lower concentration of Bi3+ ions in the glass,
intensity enhancement is observed to be rapid, showing a
maximum enhancement for the glass with 0.5 mol% Bi2O3, while
any further increase of Bi3+ concentration showed saturation due
to an increase of probability of energy migration among Bi3+ ions.
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